SPEAKER_NOTES.md

2018-09-05-dundee Software Carpentry:

lesson speaker notes

9/2/2018

These notes are for the tutor(s) on the first morning session of the Software Carpentry course held

on 5-7th September 2018 at the University of Dundee, teaching the refresher in

* |Learning objectives
* Prerequisites

¢ Things to remember

(o}

(o]

Clearing the console in
Get a 'clean' console

e SLIDES

o

(o}

(o]

TITLE: Programming in
ETHERPAD
LEARNING OBJECTIVES

e SECTION O1:

o

(o}

(o]

o

o

(o}

(o]

LEARNING OBJECTIVES
WHAT IS ?

OVERVIEW - INTERACTIVE DEMO
BUILT-IN FUNCTIONS
GETTING HELP FOR BUILT-IN FUNCTIONS
NUMERICAL COMPARISONS
WORKING IN RSTUDIO

e SECTION 02: MY FIRST PROJECT

o

(o}

(o]

o

LEARNING OBJECTIVES

PROJECT MANAGEMENT IN RSTUDIO
OBTAINING DATA

INVESTIGATING

e SECTION 03: PROGRAM FLOW CONTROL

o

[e]

o

(o]

o

LEARNING OBJECTIVES
* x
LOOPS
LOOPS
CHALLENGE
VECTORISATION
CHALLENGE

e SECTION 04: FUNCTIONS

(o}

(o]

o

o

(o}

LEARNING OBJECTIVES
WHY FIUNCTIONS?
DEFINING A FUNCTION
DOCUMENTING FUNCTIONS
FUNCTION ARGUMENTS

e SECTION 05: DYNAMIC REPORTS

o

o

LEARNING OBJECTIVES
LITERATE PROGRAMMING
1/41

SPEAKER_NOTES.md

o CREATE AN FILE
o COMPONENTS OF AN FILE
o CREATING A REPORT
SECTION 06:
o LEARNING OBJECTIVES
o WHAT AND WHY IS ?
SPLIT-APPLY-COMBINE

(o]

o CHALLENGE

o CHALLENGE
o and

9/2/2018

Learning objectives

Introduction/refresher for

o understand what is
o know the main windows of and what functions they provide
Introduction/refresher for and / project setup

o create a project in

o use good practice for project layout in

o place a project under version control with
Refresher for flow control in

o understand and use statements
o understand and use loops
o understand and use loops

Refresher for functions in

o understand the composition of an R function

o how to call functions

o how to write functions

o understand when to write functions for good code structure
Introduction to and

o understand the purpose of literate programming

o understand what a Markdown document is

o understand and be able to use syntax
Good programming practice

o good choices for variable names

o understand the importance of good documentation

o when and how to write comments in code

Prerequisites

We assume that the learners have prior exposure to many concepts:

2/41

SPEAKER_NOTES.md 9/2/2018

variables and variable assignment

data types and data structures, especially s
® using R packages
e R base graphics and

Things to remember

Clearing the console in

e remove all variables
rm(list=1s())
Get a 'clean' console

CTRL + L

SLIDES

TITLE: Programming in

ETHERPAD
e DEMONSTRATE LINK AND PAGE
¢ Please use the course etherpad to

°o make notes

o ask questions (someone will be looking at the page)
o share your knowledge with the rest of the class

o relive the class afterwards

LEARNING OBJECTIVES
e We're being QUITE AMBITIOUS, but we've a lot of time this morning, so should be OK
* We're covering some FUNDAMENTALS OF
o CREATING projects and PUTTING UNDER VERSION CONTROL

e We're covering some FUNDAMENTALS OF PROGRAMMING in R, but principles that are
APPLICABLE TO ANY LANGUAGE

3/41

SPEAKER_NOTES.md 9/2/2018

We're learning some BEST PRACTICES FOR WRITING AND ORGANISING CODE

Much of the morning session is INTENDED AS A REFRESHER

We'll be ASSUMING YOU ALREADY USE = so are familiar with some aspects:

o R syntax

data types and data structures (e.g. S)
variables, and variable assignment

o R packages

o R base graphics and

(e]

[e]

IF ANYTHING IS NEW OR UNCLEAR, PLEASE ASK STRAIGHT AWAY

SECTION 01:

LEARNING OBJECTIVES

¢ We're going to cover the BASIC ELEMENTS OF AN SESSION

e How HELPS WITH LIVE ANALYSES

e How HELPS WITH WRITING CODE FOR REPRODUCIBLE ANALYSIS
WHAT IS ?

. is an INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

o available on ALL MAJOR OPERATING SYSTEMS

o available AS A WEBSERVER
* On the left is a Mac screenshot, Windows on the right
o provides PANES so you can:
write LIVE CODE (console pane)
VISUALISE AND QUERY DATA LIVE (graphics and environment pane)
write SCRIPTS AND DOCUMENTS FOR REUSE (editor pane)
MANAGE PROJECTS AND FILES (file/ panes)

o

(e]

[e]

o

OVERVIEW - INTERACTIVE DEMO
¢ REMIND PEOPLE THEY CAN USE RED/GREEN STICKIES AT ANY TIME
© (INTRODUCE RED/GREEN STICKIES IF NECESSARY)
e ASK PEOPLE TO START

o There will be problems. Deal with them, now. It's OK if a couple of people are getting
help when you start.

4/41

SPEAKER_NOTES.md 9/2/2018

Red sticky for a question or issue Green sticky if complete
y g y P

DESCRIBE THE STARTING VIEW OF
¢ You should see THREE PANELS

o Interactive R CONSOLE: type here and get instant feedback

o ENVIRONMENT/HISTORY window

o Files/Plots/Packages/Help/Viewer: interacting with files on the computer, and
viewing help and some output

¢ REMEMBER THE WINDOWS ARE MOBILE AND PEOPLE COULD HAVE THEM IN ANY
CONFIGURATION - THE EXACT ARRANGEMENT IS UNIMPORTANT

e We're going to use R in the interactive console to get used to some of the features of the
language, and

o THE RIGHT ANGLED BRACKET IS A PROMPT: R expects input
o Type calculations, then press

e DEMO CODE: ASK PEOPLE TO TYPE ALONG

— V — V

e RESULT IS INDICATED WITH A NUMBER this indicates the line with output in it
e If you type an INCOMPLETE COMMAND, = will wait for you to complete it with the prompt

e DEMO CODE

¢ The PROMPT CHANGES TO + WHEN = EXPECTS MORE INPUT
¢ You can either complete the line, or use () to exit

e

5/41

SPEAKER_NOTES.md

¢ R obeys the usual PRECEDENCE OPERATIONS (

e DEMO CODE
© NOTE SPACES AROUND OPERATORS

— V —V —V —V

e The

ARROW KEYS recover old commands

TAB shows all commands used

will report in SCIENTIFIC NOTATION

l4

o CHECK THAT EVERYONE KNOWS WHAT SCIENTIFIC NOTATION IS

Red sticky for a question or issue
\ g

Green sticky if complete

9/2/2018

BUILT-IN FUNCTIONS

¢ [has many STANDARD MATHEMATICAL FUNCTIONS
* FUNCTION SYNTAX

o

(o]

(o]

o

o

type the function name
open parentheses

type input value

close parentheses
press return

e DEMO CODE - ask for example functions

6/41

SPEAKER_NOTES.md 9/2/2018

sin(1)

]

log(1)

]
log10(10)
]

log(10)

]

— V —_V =V —V

GETTING HELP FOR BUILT-IN FUNCTIONS

e How do we learn more about a function, or the difference between and ?
o USE ” BUILT-IN HELP
e DEMO CODE

> ?71log
> help(sin)

¢ This brings up help in the HELP WINDOW
o Scroll to the bottom of the page to find EXAMPLE CODE
* You can also use the SEARCH BOX at the top of the help window (try)

> ??1log
> args(log)
function (x, base = exp(1))

> args(logl0)
function (x)

e If you're not sure about spelling, the editor has AUTOCOMPLETION which will suggest all
possible endings for something you type (try)
e USE TAB TO SEE AUTOCOMPLETIONS FOR VARIABLES

> myvar =
> myv [TAB]

NUMERICAL COMPARISONS

¢ We can do COMPARISONS in
o Comparisons return or
e DEMO CODE

7/41

SPEAKER_NOTES.md

— V—V —V —V —V —YV

—V—Vo+#$—V——V—V—VV—V—V—V—YV

¢ THE ORDER/CONSTRUCTION OF MATHEMATICAL OPERATIONS CAN MATTER

NOTE: when comparing numbers, it's better to use

pi - == pi
]

all.equal(pi, pi
]

all.equal()

]

all.equal()

] "Mean relative
7all.equal
all.equal(pi, pi
]

all.equal(pi, pi
] "Mean relative
all.equal(pi, pi
]

all.equal(pi, pi
]

The precision is set as the square root calculation below — this may
iffer from machine to machine
.Machine$double.eps

difference:

difference:

)

)

’

)

’

]
sqrt(.Machine$double.eps)
]

0.1”

)
3.183099e-09"

(machine numeric
tolerance) ASK IF THERE'S ANYONE FROM MATHS/PHYSICS/COMPUTER SCIENCE

9/2/2018

o Write somewhere if possible: $a = ¥log(0.01~{2003})$, $b = 200 ¥times ¥log(0.01)$

o These two mathematical expressions are exactly equal: $a = b$

o But computers are not mathematicians, they're machines. Numbers are susceptible to
this rounding error, so what happens is this:

8/41

SPEAKER_NOTES.md 9/2/2018

>
[
> * log()
[

¢ COMPUTERS DO WHAT YOU TELL THEM, NOT NECESSARILY WHAT YOU WANT

WORKING IN RSTUDIO
. offers SEVERAL WAYS TO WRITE CODE

o We'll not see all of them today

o You've seen DIRECT INTERACTION IN THE CONSOLE (entering variables)

o also has an editor for writing scripts, notebooks, markdown documents, and
Shiny applications (EXPLAIN BRIEFLY)

o It can also be used to write plain text

e INTERACTIVE DEMO OF i SCRIPT
e Click on -> -> . NOTE THAT THE EDITOR WINDOW OPENS
e Enter the following text, and EXPLAIN CSV

o plain text file

© one row per line

o column entries separated by commas
o first row is header data

o NEEDS A BLANK LINE AT THE END
o DATA DESCRIBES CATS

o Note that the tab is currently

coat,weight, likes_string
calico,2.1,1
black,5.0,0
tabby,3.2,1

SAVE THE FILE AS

o Click on disk icon
o Enter filename
o Note that the name in the tab has changed

CLOSE THE EDITOR FOR THAT FILE

Click on -> ->

EXPLAIN COMMENTS while entering the code below

9/41

SPEAKER_NOTES.md 9/2/2018

o COMMENTS ANNOTATE YOUR CODE: reminders for you, and information for others
o Comments should EXPLAIN THE WHY, NOT THE HOW - the code should be clear
enough to explain how at task is performed

cats <- read.csv(file = "feline_data.csv")
e EXPLAIN
o is @ FUNCTION that reads data from a CSV-FORMAT FILE into a variable

in
SAVE THE SCRIPT

o Click on ->
o Enter filename (EXTENSION IS AUTOMATICALLY APPLIED)
o Note the tab name has changed to

SHOW THE ENVIRONMENT TAB

o This describes all variables in the current » environment.
ASK: DO YOU SEE THE VARIABLE IN THE ENVIRONMENT?

o NO - because the code hasn't been executed, only written.
RUN THE SCRIPT

o Click on
o NOTE THIS RUNS THE WHOLE SCRIPT
o NOTE THE CONSOLE ENTRY

Go to the tab

o NOTE THE DATA WAS LOADED IN THE VARIABLE
o Note that there is a description of the data (3 obs. [rows] of 3 variables [columns])
o CLICK ON THE VARIABLE AND NOTE THAT THE TABLE IS NOW VISIBLE - this is
helpful
o YOU CANNOT EDIT THE DATA IN THIS TABLE - you can sort and filter, but not
modify the data.
= This ENFORCES GOOD PRACTICE: DATA SEPARATION (compare to Excel).

Red sticky for a question or issue Green sticky if complete

10/ 41

SPEAKER_NOTES.md 9/2/2018

SECTION 02: MY FIRST PROJECT

LEARNING OBJECTIVES

* Good practice for project structure
* Load data into an project

¢ Produce summary statistics of data

e Extract subsets of data

¢ Plotting data in

PROJECT MANAGEMENT IN RSTUDIO

. TRIES TO BE HELPFUL and provides the 'Project' concept

o

Keeps ALL PROJECT FILES IN A SINGLE DIRECTORY
INTEGRATES WITH

Enables switching between projects within

Keeps project histories

o

[e]

[e]

e INTERACTIVE DEMO
e CREATE PROJECT
¢ Click ->

o Options for how we want to create a project: -brand new in a new working directory
= turn an existing directory into a project (project gets directory name)

= or checkout a project from or some other repository
e Click
o QOptions for various things we can do in . Here we want
¢ Click

o We are asked for a directory name. ENTER
o We are asked for a parent directory. PUT YOURS ON THE DESKTOP; STUDENTS CAN
CHOOSE ANYWHERE SENSIBLE
o CHOOSE TO CREATE A GIT REPOSITORY
= This might not be available to everyone, depending on setup, so PAUSE HERE

Red sticky for a question or issue Green sticky if complete

e Click

¢ YOU SHOULD SEE AN EMPTY-ISH WINDOW

11/41

SPEAKER_NOTES.md 9/2/2018

e INSPECT PROJECT ENVIRONMENT

e First, NOTE THE WINDOWS: console; environment; files
* CONSOLE is empty

e ENVIRONMENT is empty

* FILES shows

o CURRENT WORKING DIRECTORY (see breadcrumb trail) IS ROOT FOR PROJECT
o THREE FILES:

. - information about your project

. - records actions taken on the project

. - if you created a git repository, this contains paths/names of files to
be ignored

¢ CREATE DIRECTORIES IN PROJECT

¢ Create directoris called and
o Click on
o Enter directory name ()
o Note that the directory now exists in the tab

© Do the same for
¢ NOTE THAT WE WILL POPULATE THE DIRECTORIES AS WE GO
e LOOK AT THE GIT INTEGRATION
e Thereis a file indicating that the project is under version control
* There is a NEW TAB called in the Environment pane

o CLICK ON GIT TAB
o There are two files, NOTHING IS STAGED YET
o STAGE THE FILES by clicking on the checkboxes
= [t is GOOD PRACTICE to place the project file under version control
= NOTE STATUS CHANGES FROM ’ TO A (added)
o COMMIT THE FILES by clicking
= NOTE THE NEW WINDOW
Show the for both files: green means added/new line
ADD A COMMIT MESSAGE - remind learners of good practice
= good commit messages are imperative and short
CLICK COMMIT
Close the message box down

¢ NOTE THAT THIS IS JUST LIKE WORKING WITH GIT AT THE COMMAND LINE

e OPEN THE TAB

o NOTE WE ARE IN THE WORKING DIRECTORY

12 /41

SPEAKER_NOTES.md 9/2/2018

°© RUN COMMANDS

$ git status

On branch master

nothing to commit, working tree clean

$ git ls-files

.gitignore

swc—r—lesson.Rproj

$ 1s

data/ scripts/ swc—r—lesson.Rproj

OBTAINING DATA

e We've already created some cat data manually

o THIS IS UNUSUAL - most data comes in the form of plain text files
e START DEMO
e GO TO ETHERPAD

o DOWNLOAD DATA - right-click on link and save to project's subdirectory

o PUT DATA UNDER VERSION CONTROL - this is GOOD PRACTICE
= For reproducibility, keep raw data with the analysis as much as is reasonable
= Discuss when it might not be reasonable

= NOTE CHANGES IN SUBDIRECTORY
= the directory shows up in the tab
= STAGE

= note that the filename is now shown
= COMMIT THE DATAFILE

INVESTIGATING

e INSPECT DATA IN FILES WINDOW

o Click on filename, and select
o Note: THERE ARE NO ROW NAMES
o Ask: IS THIS WELL-FORMATTED DATA? (can you tell what the data represents?)

e WHAT IS THE DATA TYPE

o Tabular, with EACH COLUMN SEPARATED BY A COMMA, so CSV
o IN THE CONSOLE use to read the data in

gapminder <- read.table("data/gapminder-FiveYearData.csv", sep=",",
header=)

13 /41

SPEAKER_NOTES.md

* Note: IF WE DON'T ASSIGN THE RESULT TO A VARIABLE WE JUST SEE THE DATA

e Now we've loaded our data, let's take a look at it

e DEMO IN CONSOLE

o 1704 rows, 6 columns
o Investigate types of columns

o POINT OUT THAT THE TYPE OF A COLUMN IS INTEGER IF IT'S A FACTOR
°© LENGTH OF A DATAFRAME IS THE NUMBER OF COLUMNS

> str(gapminder)

9/2/2018

'data.frame': 1704 obs. of 6 variables:

$ country Factor w/ 142 levels "Afghanistan",..: 1 111111111

$ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...

$ pop : num 8425333 9240934 10267083 11537966 13079460 ...

$ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3
3 ...

$ lifeExp : num 28.8 30.3 32 34 36.1 ...

$ gdpPercap: num 779 821 853 836 740 ...
> typeof(gapminder$year)

[1] "integer"

> typeof(gapminder$country)

[1] "integer"

> str(gapminder$country)
Factor w/ 142 levels "Afghanistan",..:

> levels(gapminder$country)

[1] "Afghanistan"
"Angola"

[5] "Argentina"
"Bahrain"

I
> length(gapminder)
[1] 6
> nrow(gapminder)
[1] 1704
> ncol(gapminder)
[1] 6
> dim(gapminder)

"Albania"

"Australia"

[1] 1704 6
> colnames(gapminder)
[1] "country" ‘'year" "pop"
"gdpPercap"
> head(gapminder)

country year pop continent
1 Afghanistan 1952 8425333 Asia
2 Afghanistan 1957 9240934 Asia
3 Afghanistan 1962 10267083 Asia
4 Afghanistan 1967 11537966 Asia
5 Afghanistan 1972 13079460 Asia
6 Afghanistan 1977 14880372 Asia

1111111111 ...

"Algeria"

"Austria"

"continent" "lifeExp"

lifeExp

28.
30.
31.
34.
36.
38.

14 /41

801
332
997
020
088
438

gdpPercap

779.
820.
853.
836.
739.
786.

4453
8530
1007
1971
9811
1134

SPEAKER_NOTES.md 9/2/2018

> summary(gapminder)
country year pop
lifeExp

continent

Afghanistan:

Albania
Qu.:

Min.

1st Qu.:

Min.

1st Qu.:

Median :

Africa

Americas:

Asia

Min.

1st

Algeria : Median :
Median :
Angola : Mean : Mean : Europe : Mean

Argentina : 3rd Qu.: 3rd Qu.: Oceania : 3rd

Qu.:
Australia : Max. . Max. 2 Max.

(0ther)
gdpPercap

Min.

1st Qu.:
Median :
Mean

3rd Qu.:
Max. :

SECTION 03: PROGRAM FLOW CONTROL

LEARNING OBJECTIVES

¢ In this short section, you'll learn how to perform actions depending on values of data in

¢ You'll also learn how to repeat operations, using loops

* These are very important general concepts, that recur in many programming
languages

e Much of the time, you can avoid using them in R data analyses, because exists, and

because F is vectorised

* x

e We **often want to run a piece of code, or take an action, dependent on whether some data
has a particular value

o (if itis true or false, say)

¢ When this is the case, we can use the general structure, which is common to

most programming languages
e DEMO IN SCRIPT

e CREATE NEW SCRIPT (save as)

15/41

SPEAKER_NOTES.md 9/2/2018

o Let's say that we want to print a message if some value is greater than 10
© NOTE AUTOCOMPLETION/BRACKETS ETC.
o THE CODE TO BE RUN GOES IN CURLY BRACES

X <—
if (x > 10) {
print("x is greater than 10")
b
. THE FILE
o NOTHING HAPPENS (is)
o The block executes ONLY IF THE VALUE IN PARENTHESES EVALUATES AS

e MODIFY THE SCRIPT

o Add the block
o the code: WE GET A MESSAGE
o BUT IS THE MESSAGE TRUE?

if (x > 10) {

print("x is greater than 10")
} else {

print("x is less than 10")

by

e SET AND TRY AGAIN
o Is the answer correct?

Red sticky for a question or issue Green sticky if complete
* MODIFY THE SCRIPT WITH STATEMENT

o the script: NO OUTPUT
X <-=

16 /41

SPEAKER_NOTES.md 9/2/2018

Example if statement
if (x > 10) {

print("x is greater than 10")
} else if (x < 10) {

print("x is less than 10")

by

e MODIFY THE SCRIPT WITH A FINAL c¢1se STATEMENT
o Source the script: EQUALS output

A data point
X <—=9

Example if statement
if (x > 10) {
print("x is greater than 10")
} else if (x < 10) {
print("x is less than 10")
} else {
print("x is equal to 10")
b

¢ TRY SOME OTHER VALUES for x

SLIDE: Challenge

¢ Build up the solution with each concept in turn

> gapminder$year

[1] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 1952
1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

[25] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 1952
1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

[...]
> gapminder$year == 2002

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[21] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

[...]
> any(gapminder$year == 2002)

[1] TRUE

> any(gapminder$year == 2001)

[1] FALSE

Are there any records for a year
year <— 2002

if(any(gapminder$year == year))<{

17/41

SPEAKER_NOTES.md 9/2/2018

print("Record(s) for this year found.")

b
Red sticky for a question or issue Green sticky if complete
LOOPS
e If you want to iterate over a set of values, then loops can be used
. loops are A VERY COMMON PROGRAMMING CONSTRUCTION

¢ They express the idea: FOR EACH ITEM IN A GROUP, DO SOMETHING (WITH THAT

ITEM)
e DEMO IN SCRIPT ()
o Say we have a vector , and we want to print each item

o We can loop over all the items and print them
* The loop structure is

o , Where the argument names a variable (1) - the iterator, and a set of values:

o A CODE BLOCK defined by curly braces (**note automated completion)
o The contents of the code block are executed for each value of the iterator

for (i in c('a', 'b', 'c')) {
print(i)
}

¢ Loops can (but shouldn't always) be nested
e DEMO IN SCRIPT
o The outer loop is executed and, for each value in the outer loop, the inner loop is
executed to completion

for (i in 1:5) {
for (j in c('a', 'b', 'c')) {
print(paste(i, j))
}
}

18 /41

SPEAKER_NOTES.md 9/2/2018

* The simplest way to capture output from a loop is to add a new item to a vector each
iteration of the loop
e DEMO IN SCRIPT
o REMIND: using to append to a vector

output <- c()
for (i in 1:5) {
for (j in c('a', 'b', 'c')) {
output <- c(output, paste(i, j))
b
b
print(output)

e GROWING OUTPUT FROM LOOPS IS COMPUTATIONALLY VERY EXPENSIVE

o Doing this will really slow down your scripts for larger datasets

o Better to define the empty output container first (IF YOU KNOW THE DIMENSIONS)
e MODIFY IN SCRIPT

output_matrix <- matrix(nrow=5, ncol=3)
j_letters = c('a', 'b', 'c'")
for (i in 1:5) {

for (j in 1:3) {
output_matrix[i, j] <- paste(i, j_letters[j])
I
b

print(output_matrix)

LOOPS
¢ Sometimes you need to perform some action ONLY WHILE A CONDITION IS TRUE

o This isn't as common as a loop
o It's another GENERAL PROGRAMMING CONSTRUCTION

e DEMO IN SCRIPT

o We'll generate random numbers until one falls below a threshold
o generates random numbers from a uniform distribution
= ASK LEARNERS HOW TO GET HELP ON THIS

> ?runif

¢ We print random numbers until one is less than 0.1

19/41

SPEAKER_NOTES.md 9/2/2018

© RUN A COUPLE OF TIMES TO SHOW OUTPUT IS RANDOM

Example while loop
z <-
while(z >) {

Z <— runif(1)

print(z)
b
CHALLENGE
¢ Best to give example of what is, and demonstrate how the help mechanism fails for
¢ Also show that doesn't work for membership of a string - needs a vector
> letters

[1] "a" "b"™ "c" "d" "e" "f" "g" '"h" "i™ "j" Uk"™ "1™ "m" "n" "o" "p" "qg"
e U A T G A A

> 7%1in%

Error: unexpected SPECIAL in "7%in%"

> ?1n

Error: unexpected 'in
> ?'"%in%"

in "?in"

> 'e' %in% letters

[

> 'e' %in% 'aeiou'

[1]

> 'e' %in% c('a', 'e', 'i', 'o', 'u')
[

]
¢ Then, in the script

Challenge solution
gapminder <- read.table("data/gapminder-FiveYearData.csv", sep=",",
header=)
for (c in levels(gapminder$country)) {
if (startsWith(c, 'M')) {
value <-
} else {
value <-
b
print(paste(c, value))

}

¢ COMMIT THE SCRIPT TO THE REPO WHEN DONE

20/41

SPEAKER_NOTES.md

Red sticky for a question or issue

Green sticky if complete

9/2/2018

VECTORISATION

— V — V — V V — V — V V
— X — X X

— V —V —V —V
— Q) QN X

and loops are useful, but they are NOT THE MOST EFFICIENT WAY TO

WORK WITH DATA IN

MOST FUNCTIONS IN = ARE VECTORISED

o When applied to a vector, they work on all elements in the vector

© NO NEED TO USE A LOOP

DEMO IN CONSOLE

o OPERATORS are vectorised

YOU CAN OPERATE ON VECTORS TOGETHER

COMPARISON OPERATORS ARE VECTORISED

\%

A

21/41

SPEAKER_NOTES.md 9/2/2018

¢ MANY FUNCTIONS WORK ON VECTORS

CHALLENGE

countries <— levels(gapminder$country)
mstart <- startsWith(countries, 'M')
print(countries[mstart])

¢ COMMIT MODIFIED SCRIPT

Red sticky for a question or issue Green sticky if complete

SECTION 04: FUNCTIONS

LEARNING OBJECTIVES

e YOU'VE ALREADY BEEN USING BUILT-IN FUNCTIONS (e.g.) and, I hope, have
found them useful
¢ Functions let us run a complex series of commands in one go
o YOU WOULDN'T HAVE TO WANT TO WRITE/REPEAT BASIC CALCULATIONS FOR
EACH TIME YOU USE IT
o They keep the operation under a MEMORABLE OR DESCRIPTIVE NAME, which
makes the code READABLE AND UNDERSTANDABLE, and they are invoked with that
name
o There are a DEFINED SET OF INPUTS AND OUTPUTS for a function, so WE KNOW
WHAT BEHAVIOUR TO EXPECT

WHY FIUNCTIONS?
¢ Functions let us RUN A COMPLEX SERIES OF RELATED COMMANDS IN ONE GO

o Can be LOGICALLY or FUNCTIONALLY related

22 /41

SPEAKER_NOTES.md 9/2/2018

¢ It helps when functions have DESCRIPTIVE AND MEMORABLE NAMES, as this makes code
READABLE AND UNDERSTANDABLE

¢ We invoke functions with their name
e We A DEFINED SET OF INPUTS AND OUTPUTS - aids clarity and understanding
* FUNCTIONS ARE THE BUILDING BLOCKS OF PROGRAMMING

¢ As a RULE OF THUMSB it is good to write small functions with one obvious, clearly-defined
task.

o As you will see we can CHAIN SMALL FUNCTIONS TOGETHER TO MANAGE
COMPLEXITY

DEFINING A FUNCTION
¢ Functions have a STANDARD FORM in

o We DECLARE A

o We use the function/keyword to assign the function to

o Inputs (arguments) to a function are defined in parentheses: These are defined as
variables for use within the function AND DO NOT EXIST OUTSIDE THE FUNCTION

o The code block (cCURLY BRACES) encloses the function code, the function body.

o NOTE THE INDENTATION - Easier to read, but does not affect execution

o The code

o The function returns the value, when the function is called

e DEMO IN SCRIPT

o CREATE NEW SCRIPT
o Write and

my_sum <— function(a, b) {
the_sum <— a + b
return(the_sum)

by

e ADD SCRIPT TO VERSION CONTROL
e DEMO IN CONSOLE

o SOURCE the script

> my_sum(3, 7)
[1]

> a
23 /41

SPEAKER_NOTES.md 9/2/2018

Error: object 'a' not found
> b
Error: object 'b' not found

¢ GOOD VARIABLE NAMING IS IMPORTANT

o For a function this size, and so simple, it's clear what @ and b are - but that is not
always the case
o We can make the function clearer by changing these names

¢ CHANGE VARIABLE NAMES IN-PLACE

e TEST THE SCRIPT

Example function

Returns the sum of two input values

my_sum <— function(vall, val2) {
the_sum <- vall + val2
return(the_sum)

by

> source('~/Desktop/swc-r-lesson/scripts/functions.R")
> my_sum(3, 7)

[1]

> a
Error: object 'a' not found

> vall

Error: object 'vall' not found
> val2

Error: object 'val2' not found

e ADD SCRIPT TO VERSION CONTROL
e DEMO IN SCRIPT

o Let's define another function: convert temperature from fahrenheit to Kelvin

Convert Fahrenheit to Kelvin

fahr_to_kelvin <- function(temp) {
kelvin <- (temp - 32) x (5 / 9) +
return(kelvin)

by

e SOURCE AND DEMO IN SCRIPT

24 /41

SPEAKER_NOTES.md 9/2/2018

ahr_to_kelvin(32)

> f
[1]
> fahr_to_kelvin(-40)
[1]
> fahr_to_kelvin(212)
[1]

> temp
Error: object 'temp' not found

e LET'S MAKE ANOTHER FUNCTION CONVERTING KELVIN TO CELSIUS
e DEMO IN SCRIPT
o the script

Convert Kelvin to Celsius
kelvin_to_celsius <— function(temp) {
celsius <- temp -
return(celsius)

by

¢ SOURCE AND DEMO IN CONSOLE

> kelvin_to_celsius()
[1]

> kelvin_to_celsius()
[1] -

> kelvin_to_celsius()
[1]

WE COULD DEFINE A NEW FUNCTION TO CONVERT FAHRENHEIT TO CELSIUS

o Butit's EASIER TO COMBINE EXISTING FUNCTIONS we've already written
o AVOIDS INTRODUCING NEW BUGS
o Efficient to REUSE CODE

* DEMO IN CONSOLE

> fahr_to_kelvin(212)
[1]

> kelvin_to_celsius(fahr_to_kelvin(212))

[1]

DEMO IN SCRIPT

25/41

SPEAKER_NOTES.md 9/2/2018

fahr_to_celsius <- function(temp) {
celsius <- kelvin_to_celsius(fahr_to_kelvin(temp))
return(celsius)

}

e DEMO IN CONSOLE
© NOTE: AUTOMATICALLY TAKES ADVANTAGE OF ii's VECTORISATION

> fahr_to_celsius(212)

>[lahr_to_celsius()

>[lahr_to_celsius(—)

>[la;r_to_celsius(c(— g S))
[11 -

DOCUMENTING FUNCTIONS

e It's important to have well-named functions (and variables... THIS IS A FORM OF
DOCUMENTATION - SELF-DOCUMENTING CODE)

e But it's not a detailed explanation

¢ You've found R's help useful, but it doesn't exist for your functions until you write it

* YOUR FUTURE SELF WILL THANK YOU FOR DOING IT!

e SOME GOOD PRINCIPLES TO FOLLOW WHEN WRITING DOCUMENTATION ARE:

o Say WHAT the code does (and WHY) - more important than how (the code does that)
o Define your inputs and outputs
o Provide an example

e DEMO IN CONSOLE

> ?fahr_to_celsius

No documentation for ‘fahr_to_celsius’ in specified packages and
libraries:

you could try ‘??fahr_to_celsius’

> ??7fahr_to_celsius

e DEMO IN SCRIPT
o We add documentation as comment strings in the function

26 /41

SPEAKER_NOTES.md 9/2/2018

Fahrenheit to Celsius
fahr_to_celsius <— function(temp) {
Convert input temperature from fahrenheit to celsius scale

temp — numeric

> fahr_to_celsius(c(-40, 32, 212))

[1] -40 0 100
celsius <- kelvin_to_celsius(fahr_to_kelvin(temp))
return(celsius)

#
#
Example:
#
#

¢ SOURCE the script
e DEMO IN CONSOLE

> ?fahr_to_celsius

No documentation for ‘fahr_to_celsius’ in specified packages and
libraries:

you could try ‘??fahr_to_celsius’

¢ We read the documentation by providing the function name ONLY

> fahr_to_celsius
function(temp) {
Convert input temperature from fahrenheit to celsius scale

temp — numeric

> fahr_to_celsius(c(-40, 32, 212))

[1] -40 0 100
celsius <- kelvin_to_celsius(fahr_to_kelvin(temp))
return(celsius)

#
#
Example:
#
#

¢ COMMIT SCRIPT TO VERSION CONTROL

FUNCTION ARGUMENTS

e DEMO IN SCRIPT ()
o script

Report countries in gapminder data
list_countries <- function(data) {

271741

SPEAKER_NOTES.md 9/2/2018

Returns countries from the gapminder dataset
#

data — gapminder data.frame

#

Example:

#

countries <- list_countries(gapminder)
countries <- levels(data$country)
return(countries)

¢ SOURCE SCRIPT
e DEMO IN CONSOLE

> list_countries(gapminder)

[1] "Afghanistan" "Albania" "Algeria"
[4] "Angola" "Argentina" "Australia"
[7] "Austria" "Bahrain" "Bangladesh"
[...]

* So, those are all the countries - but what if we want to GET COUNTRIES
STARTING WITH A GIVEN LETTER?

e DEMO IN SCRIPT ()

o script

> list_countries(gapminder, 'M')
Error in list_countries(gapminder, "M") : unused argument ("M")

* The function doesn't understand what we want

e We need to TELL THE FUNCTION TO EXPECT A LETTER
o DEMO IN SCRIPT
o Don't forget to update the documentation

Report countries in gapminder data
list_countries <- function(data, letter) {
Returns countries from the gapminder dataset,

filtered by starting letter

#

data — gapminder data.frame
letter — character

#

Example:

countries <- list_countries(gapminder)

countries <- levels(data$country)
matches <- startsWith(countries, letter)
return(countries[matches])

28 /41

SPEAKER_NOTES.md

9/2/2018

* Now the function should accept a letter, and report only countries starting with the letter
e SOURCE THE SCRIPT

> list_countries(gapminder, 'M")

[1] "Madagascar" "Malawi" "Malaysia" "Mali" "Mauritania"
"Mauritius" "Mexico"
[8] "Mongolia" "Montenegro" "Morocco" "Mozambique" "Myanmar"

* So that works, but we have a problem:

> list_countries(gapminder)
Error in startsWith(countries, letter)

argument "letter" is missing, with no default

* NO LETTER PROVIDED MEANS NO OUTPUT

o We need to handle this
= 1 - PROVIDE A DEFAULT VALUE ()
» 2 - TEST FOR VALUE AND TAKE ALTERNATIVE ACTIONS

e DEMO IN SCRIPT

Report countries in gapminder data
list_countries <- function(data, letter=NULL) {

Returns countries from the gapminder dataset, optionally

filtered by starting letter

#

data — gapminder data.frame
letter — character

#

Example:

countries <- list_countries(gapminder)

countries <- levels(data$country)

if (lis.null(letter)) {
matches <- startsWith(countries, letter)
countries <- countries[matches]

}

return(countries)

SOURCE SCRIPT
DEMO IN CONSOLE

source('~/Desktop/swc—r-lesson/scripts/functions.R")
list_countries(gapminder)
[1] "Afghanistan" "Albania" "Algeria"

29 /41

SPEAKER_NOTES.md 9/2/2018

[4] "Angola" "Argentina" "Australia"
[7] "Austria" "Bahrain" "Bangladesh"
[...]
> list_countries(gapminder, 'M')
[1] "Madagascar" "Malawi" "Malaysia" "Mali" "Mauritania"
"Mauritius" '"Mexico"
[8] "Mongolia" "Montenegro" "Morocco" "Mozambique" "Myanmar"
> list_countries(gapminder, 'G')
[1] "Gabon" "Gambia" "Germany" "Ghana"
"Greece" "Guatemala"
[7] "Guinea" "Guinea-Bissau"

e COMMIT SCRIPT TO VERSION CONTROL

SECTION 05: DYNAMIC REPORTS

LEARNING OBJECTIVES

¢ 1In this section, we'll be learning how to create REPRODUCIBLE, ATTRACTIVE, DYNAMIC
REPORTS with

e To do so, we'll learn some SYNTAX, and how to put WORKING ~ CODE into a
document

e We'll also look at generating the report in A NUMBER OF FILE FORMATS, for sharing.

LITERATE PROGRAMMING

¢ What we're about to do is an example of Literate Programming, a concept introduced by
Donald Knuth

¢ The idea of Literate Programming is that

o The program or analysis is explained in NATURAL LANGUAGE**
o The CODE needed to run the program/analysis is EMBEDDED IN THE DOCUMENT
o The whole document is executable

¢ We can produce these documents in

CREATE AN FILE

e In R, literate programming is **implemented in files
* To create one: $¥rightarrow$ $¥rightarrow$
o There is a dialog box
= ENTER A TITLE ()
= CLICK OK
o Save the file ()
= CREATE NEW SUBDIRECTORY ()E*
= SAVE AS

30/41

SPEAKER_NOTES.md 9/2/2018

* The file gets the EXTENSION
o The file is AUTOPOPULATED with example text

COMPONENTS OF AN FILE

e The HEADER REGION is fenced by
o METADATA (author, title, date)
o Requested OUTPUT FORMAT

title: "Literate Programming"
author: "Leighton Pritchard"
date: "04/12/2017"

output: html_document

¢ Natural language is written as plain text, with some EXTRA CHARACTERS FOR
FORMATTING

© NOTE THE HASHES #, ASTERISKS :+ AND ANGLED BRACKETS
e R code runs in the document, and is fenced by backticks
e CLICK ON

o A new (pretty) document is produced in a new window
¢ CROSS REFERENCE MARKDOWN TO DOCUMENT

o Title, Author, Date
o Header

o Link

o Bold

o R code and output
o Plots

e SHOW THAT AN HTML FILE IS PRODUCED
e CLICK ON
o A new document opens in a new window
¢ CROSS REFERENCE MARKDOWN TO DOCUMENT
o NOTE: The formatting isn't identical
e CLICK ON

o A new document opens up

31/41

SPEAKER_NOTES.md 9/2/2018

¢ CROSS REFERENCE MARKDOWN TO DOCUMENT
o NOTE: The formatting isn't identical
* NOTE THE LOCATION OF THE OUTPUT FILES - ALL IN THE SOURCE DIRECTORY

o CLOSE THE OUTPUT

CREATING A REPORT

e We'll CREATE A REPORT on the data
o We'll be using LITERATE PROGRAMMING
o We'll also be learning some and as we go

SECTION 06:

LEARNING OBJECTIVES

* You're going to learn to manipulate s with the six verbs of
[]
[]
[]
. (pipe)
WHAT AND WHY IS ?
. is a package in the TIDYVERSE; it exists to enable RAPID ANALYSIS OF DATA BY
GROUPS

o For example, if we wanted numerical (rather than graphical) analysis of the
data by continent, we'd use

¢ So far, we know how to subset, but REPETITIVE APPLICATION IS TEDIOUS**
e DEMO IN CONSOLE

o If we wanted to use the data to calculate average GDP per continent, we
can
o This needs repetition each time we calculate for a continent

32/41

SPEAKER_NOTES.md 9/2/2018

> mean(gapminder[gapminder$continent == "Africa", "gdpPercap"])
[1]

> mean(gapminder[gapminder$continent == "Asia", "gdpPercap"])

[1]

> mean(gapminder[gapminder$continent == "Americas", "gdpPercap"])

[1]

e WE MIGHT MANAGE TO REPEAT BY CONTINENT, LIKE HERE - BUT BY COUNTRY?
¢ AVOIDING REPETITION IMPROVES YOUR CODE

o More ROBUST
o More READABLE
o More REPRODUCIBLE

SPLIT-APPLY-COMBINE
* The general principle supports is SPLIT-APPLY-COMBINE
e We have a DATASET WITH SEVERAL GROUPS (column x)

e We want to PERFORM THE SAME OPERATION ON EACH GROUP, INDEPENDENTLY - take
a mean of v for each group defined in x, for example

o So we SPLIT the data into groups, on
o Then we APPLY the operation (take the mean for each group)
o Then we COMBINE the results into a new table

e CREATE NEW FILE

o Title it
o Savein

e DELETE DEFAULT TEXT

e WRITE INTRODUCTION

Introduction

This "RMarkdown®™ document contains examples for learning how to use
“dplyr® to analyse dataframes by groups

Importing “dplyr’
Import “dplyr’ with the “require()" function, in the “{r setup} block

We also import “knitr® to get pretty tables and formatting.
33/41

SPEAKER_NOTES.md 9/2/2018

Load data

" {r load_data}

gapminder <- read.table("..data/gapminder-FiveYearData.csv", sep=",",
header=TRUE)

kable(head(gapminder))

e Describe FORMAT SYMBOLS
* Note PRETTIFIES TABLES
e Add and to block
¢ Remember the RELATIVE PATHS
e KNIT THE DOCUMENT
o It's not particularly fancy, but it works.

Red sticky for a question or issue Green sticky if complete

e WRITE TEXT FOR

“dplyr’ verbs
“select()’
The “select()” xverbx selects *xcolumnsx by name.

If we want to select year, country and GDP data from “gapminder’, we
specify the dataset, then the column names with the “select() function:

" {r select}
kable(head(select(gapminder, year, country, gdpPercap)))

e KNIT THE DOCUMENT
o The R command and its output are both displayed.
¢ Add text about using the PIPE
e Here, we applied a function, but we can also 'PIPE' DATA FROM ONE VERB TO ANOTHER

o These work LIKE PIPE IN THE SHELL**
o SPECIAL PIPE SYMBOL:
o Specify ONLY COLUMNS

34 /41

SPEAKER_NOTES.md 9/2/2018

As well as using the “select()" function, we can *pipex data into *xverbsx

using the "%>%" (xkpipexx) operator. We xpipex in the data, and only need
to specify chosen columns:

“{r select_pipe}
kable(head(gapminder %>% select(year, country, gdpPercap)))

AR

e KNIT THE DOCUMENT
o The R command and its output are both displayed.

Red sticky for a question or issue Green sticky if complete

selects rows on the basis of a specified condition, or combination of conditions
o We can USE IT AS A FUNCTION, OR WITH PIPES

e WRITE TEXT FOR

filter()"

The “filter()® sverbx selects xrowsx on the basis of a specified

condition, or combination of conditions. It can also be used as a function
or with xpipesx*:

U {r filter}

kable(head(filter(gapminder, continent=="Europe")))

U {r filter_pipe}
kable(head(gapminder %>% filter(continent=="Europe")))

e KNIT THE DOCUMENT
o The R command and its output are both displayed.

Red sticky for a question or issue Green sticky if complete

e WRITE TEXT FOR (PIPES)

35/41

SPEAKER_NOTES.md 9/2/2018

%% (pipe)

The *%>%" (pipe) operator makes *chaining verbsx together (into a
*pipelinex) more readable. When several lines of code are needed, end
lines with a pipe so that "R° knows to continue.

““{r pipes}

eurodata <- gapminder %>%
filter(continent == "Europe") %>%
select(year, country, gdpPercap)

kable(head(eurodata))

AN

e KNIT THE DOCUMENT
o The R command and its output are both displayed.

: Red sticky for a question or issue Green sticky if complete

CHALLENGE

e WRITE CHALLENGE TEXT IN DOCUMENT
o Solve the challenge in your document

Challenge

Write a single command (which may span multiple lines, with pipes) to
produce a dataframe containing:

- country
- life expectancy
- year data
only for African nations.
Call the dataframe "afrodata . How many rows does it have?
““*{r challenge_1}
afrodata <- gapminder %>%
filter(continent == "Africa") %%

select(country, year, lifeExp)
kable(head(afrodata))

The dataframe “afrodata’ has “r nrow(afrodata) rows.

36 /41

SPEAKER_NOTES.md 9/2/2018

e EXPLAIN INLINE = SYNTAX

o This means we don't have to run analysis and type output
o We can use R variables directly in the text
e KNIT THE DOCUMENT

o The R command and its output are both displayed.

Red sticky for a question or issue Green sticky if complete

* The verb SPLITS s INTO GROUPS BASED ON A COLUMN
PROPERTY

o It returns a - a table with extra metadata describing the groups in the table

e **WRITE TEXT FOR

“group_by()"

The “group_by() " xverbx splits "data.frame's into groups, based on a
column property. It returns a “tibble’ - a table with extra metadata
describing groups in the table.

**{r group_by}

group_by(gapminder, continent)

This is an extremely useful step in split—-apply—combine.

e KNIT THE DOCUMENT
o The R command and its output are both displayed.

Red sticky for a question or issue Green sticky if complete

¢ The COMBINATION OF AND IS VERY POWERFUL AND THE
BASIS OF SPLIT-APPLY-COMBINE

e WRITE TEXT FOR

37/41

SPEAKER_NOTES.md 9/2/2018

" summarize()’

The combination of “group_by() ™ and “summarize()® is very powerful, and
the basis of “split-apply-combine’.

We can create *xnew variables*x using functions that repeat their action on

each group produced with “group_by()" . For instance, we can calculate mean
GDP by continent for “gapminder’ data:

Y {r summarize}

meangdpContinent <- gapminder %>%
group_by(continent) %>%
summarize(meangdpPercap = mean(gdpPercap))

kable(meangdpContinent)

e KNIT THE DOCUMENT
o The R command and its output are both displayed.

|
: Red sticky for a question or issue Green sticky if complete

CHALLENGE

e WRITE CHALLENGE TEXT IN DOCUMENT
o Solve the challenge in your document

Challenge

Write a single command (which may span multiple lines, with pipes) to
produce a dataframe describing:

— average life expectancy by country

Call the dataframe “meanlifexpCountry . Which nation has the greatest and
which the shortest life expectancy?

" “{r challenge_2}

afrodata <- gapminder %>%
filter(continent == "Africa") %%
select(country, year, lifeExp)

kable(head(afrodata))

The nation with the longest 1life expectancy is "r meanlifexpCountry %>%
filter(meanlifeExp==max(meanlifeExp)) %>% select(country) and that with

38/41

SPEAKER_NOTES.md 9/2/2018

the shortest is "r meanlifexpCountry %>%
filter(meanlifeExp==min(meanlifeExp)) %>% select(country) .

e EXPLAIN INLINE = SYNTAX
o This means we don't have to run analysis and type output
o We can use R calculations directly in the text

e KNIT THE DOCUMENT
o The R command and its output are both displayed.

: Red sticky for a question or issue Green sticky if complete

HHH and

e Two other useful functions are related to

o reports a NEW TABLE OF COUNTS BY GROUP
o is used to represent the COUNT OF ROWS, when calculating new values in
e WRITE TEXT FOR AND

“count()” and “n()°
The xverbs*x “count()" and "n()° are related to ‘summarize() .

— “count()" reports a new table of counts, by group
- 'n()" represents the count of rows when calculating new values with
‘summarize()®

We can use “count()" to get the number of results in 2002 in each
continent:

" {r count}

result <- gapminder %>%
filter(year == 2002) %>%
count(continent, sort=TRUE)

kable(result)

We can use 'n()° as a value in a calculation to help calculate standard
error of life expectancy for each continent:

U {r n}

result <- gapminder %>%
group_by(continent) %>%
summarize(selifeExp = sd(lifeExp)/sqrt(n()))

39/41

SPEAKER_NOTES.md 9/2/2018

kable(result)

¢ KNIT THE DOCUMENT

o The R command and its output are both displayed.
* NOTE: standard error is (std dev)/sqrt(n)

Red sticky for a question or issue Green sticky if complete

. CALCULATES NEW VARIABLES (COLUMNS) ON THE BASIS OF EXISTING
COLUMNS

o Say we want to calculate the total GDP of each nation, each year, in $bn
o We'd multiply the GDP per capita by the total population, and divide by 1bn
o We have a new data table, which is the data, plus an extra column

e WRITE TEXT FOR

“mutate()’

The “mutate()” verb calculates new variables (columns) in a dataframe,
from data in existing columns.

If we want to calculate the total GDP of each nation, each year, in
$billion, we could multiply the GDP per capita by the total population,
and divide by 1billion, then put this in a new column:

7 {r mutate}
gdpbynation <- gapminder %>%

mutate(gdpBillion = gdpPercap * pop / 1e9)
kable(head(gdpbynation))

e KNIT THE DOCUMENT
o The R command and its output are both displayed.

Red sticky for a question or issue Green sticky if complete

e We can chain verbs together with pipes to CALCULATE SEVERAL SUMMARIES IN A
SINGLE COMMAND

40 /41

SPEAKER_NOTES.md 9/2/2018

* We can use the output of in the command

o We're going to calculate the total (and standard deviation) of GDP per continent,
per year

o Calculate total GDP first

o Group by continent and year

o Summarise mean and sd of GDP per capita, and total GDP

e WRITE TEXT FOR CONCLUSION

Conclusion

We can perform powerful data analyses using "dplyr® in "R, while still
having readable, understandable code.

For example, we can *chain verbsx to calculate the total (and standard
deviation) of GDP per continent, for each year, as follows:

R
" “{r conclusion}
gdpbyyearContinent <- gapminder %>%
mutate(gdpBillion = gdpPercap * pop /) %>%
group_by(continent, year) %>%
summarize(meangdpPercap = mean(gdpPercap),
sdgdpPercap = sd(gdpPercap),
meangdpBillion = mean(gdpBillion),
sdgdpBillion = sd(gdpBillion))
kable(head(gdpbyyearContinent))

e KNIT THE DOCUMENT
o The R command and its output are both displayed.

e POINT OUT THAT LEARNERS NOW HAVE A LITERATE PROGRAMMING DOCUMENT OF
ALL THE MAIN VERBS WITH INTERACTIVE ~ CODE

Red sticky for a question or issue Green sticky if complete

41741

