SPEAKER_NOTES.md - R for Reproducible
Scientific Analysis

Speaker Notes for the 2017-01-11 Software Carpentry R for Reproducible Scientific Analysis lesson

TYPE ALL EXAMPLES AS YOU GO. THIS KEEPS THE SPEED SANE, AND ALLOWS YOU TO
EXPLAIN EVERY STEP.

START SLIDES WITH reveal-md slides.md --theme=white

Introduction to R and RStudio

SLIDE (Why R / RStudio ?)

e Talk around slide
SLIDE ("But | already know Excel!")
SLIDE (R / RStudio presentation)

e Live presentation section
e Everyone startup RStudio

Summarise windows

e Four (maybe three) subwindows:
o Interactive R console
o Editor (may be missing on startup - will appear when files are opened)
o Environment/History
o Files/Plots/Packages/Help

Create a working directory with version control

e We're following practices of project management

o

We'll create a project directory, with Git version control

o

Helps ensure data integrity

(o}

Makes sharing code easier (lab-mates, publication)
Easier to recover after a Christmas break

o

e Create the new directory LIVE

o

File->New Project
o New Directory

o Empty Project

o

Enter sensible name, e.g. swc-r reproducible

(o}

Check box for Create a git repository

o Create project

Red sticky for a question or issue Green sticky if complete

e Describe contents of new folder
o .gitignore

o .Rproj
SLIDE (Best practices)

e Talk around slide

Create directory structure

SLIDE (Creating files/directories)

e LIVE PRESENTATION
¢ Create subdirectory for data

o In Files tab, create data subdirectory
e Create new R script

o File -> New File -> R script

o save in working directory with sensible name, e.g. swc-script.R

Red sticky for a question or issue Green sticky if complete

e LIVE VERSION CONTROL EXAMPLE
e Show Git tab on right
o Stage files

o Three files shown (including .gitignore and the new script file)
o Yellow status markers mean they're not in the repository
o Click check-boxes to stage them

o Note that we don't version disposable output
e Commit files

o Click Commit

o Describe new dialogue window

o Show contents/changes to files

o Add commit message ("initialise repository") - good commit messages are short and imperative
o Commit

o Show commit summary

o Exit

Red sticky for a question or issue Green sticky if complete

SLIDE (Challenge 1)
Run through challenge (5min?) - hint about editing .gitignore

¢ Right-click link on presentation and download to data
e Create graphs subdirectoryin Files tab

e Edit .gitignore toadd graphs/ folderand save
e Stage .gitignore in Gittab

e Commit in Git tab, and add appropriate commit message
e Demo History window for Git

SLIDE (R as a calculator)

Interacting with R

e Two ways

o Type commands in the console
o Use the script editor and save the script

e Console

o Qutput shown here
o Good for experimentation
o Commands 'forgotten' when you close a session

e Script

o Keeps record of what you did

o Easier to reproduce and share
Working at the console
e R showsa > ifitisexpectinginput
I > 1 + 100
[1] 101

e R shows + ifit's waiting for completion (Esc to exit)

> 1 +
+

Working from script file
e Can write same commands in the scriptfile (1 + 100)

o Use Run to execute

o Use Ctrl-Enter toexecute

o Output appears in the console

o Show # comments - good practice to comment
o More examples (order of precedence):

>3+ 5 %2
[1] 13
> (3 +#5) *2
[1] 16

e Show Source operation: add the following lines to script:

Using R as a calculator script demo
1+ 100

3+5*2

(3 +5) *2

e Run script

> # Using R as a calculator script demo
>1 + 100

[1] 101

>3 +5 * 2

[1] 13

> (3 +5) *2

[1] 16

e More examples
o scientific notation

1| > 1/40

2 | [1] @.025
3 | > 2/10000
4 | [1] 2e-04
5 > 5e3

6 | [1] 5000

T ——

Mathematical functions

e General format: fn(arg)

o autocompletion - example: factorial(6)

> sin(1)

[1] ©.841471
> log(1)

[1] o

> logle(10)
[1] 1

> exp(0.5)
[1] 1.648721

00 N O VT A WN R

Comparisons

e Return TRUE / FALSE logical values

1 >1==1
2 | [1] TRUE
3 > 1 ==

4 | [1] FALSE
51 >11=2
6 | [1] TRUE
7 >1< 2

8 | [1] TRUE
9 >1 > 2
10 | [1] FALSE
11 >1<=2
12 | [1] TRUE
13 >1 >=2
14 | [1] FALSE

e Computer representation of numbers is approximate: important for comparisons
o Any physicists/computer scientists in the room?
o Numbers may not be equal, but be 'the same'
o Use all.equal insteadof ==

1 | > all.equal(pi-1e-7, pi)

2 | [1] "Mean relative difference: 3.183099e-08"
3 | > all.equal(pi-1e-8, pi)

4 | [1] TRUE

5| > pi-le-8 == pi

6 | [1] FALSE

Variables and assignment
e Variables hold values, just like in Python
e Two ways to assign variables: <- and =

o The <- form is more widely used
o Consistency more important than choice

1| > x<-1/40
2 > X

3 [1] @.025
4 | > x =1/40
5 > X

6 | [1] @.025

e Look at the Environment tab automatic updates

l 1] > x <- 100
’

e Variables can be used as arguments to functions

1| > log(x)

2 | [1] 4.60517
3 | > sgrt(x)

4 | [1] 1e

e Variables can be used to reassign values to themselves

1 > X

2 [1] 100

3 >X <-x+1
4 > X

5 [1] 1e1

SLIDE (Good variable names)
e Talk around slide

SLIDE (MCQ1)

e Pose question

Package management
SLIDE (Package Management)
e See what packages are installed with installed.packages()

o demo this one

Add a new package using install.packages("packagename")

o demo this one with install.packages("ggplot2")

Update packages with update.packages()

o demo this one

You can remove a package with remove.packages("packagename")

To make a package available for use, use library(packagename)

o demo
o Note that there are no quotes, this time

> ggplot()
Error: could not find function "ggplot"

> library(ggplot2)
Warning message:
package ‘ggplot2’ was built under R version 3.2.3
> ggplot()
Warning message:
In max(vapply(evaled, length, integer(1))) :
no non-missing arguments to max; returning -Inf

SLIDE (Challenge 2)

Solution:
install.packages("plyr")
install.packages("gapminder")

install.packages("dplyr")
install.packages("tidyr")

Getting help for functions

SLIDE (Functions, and getting help)

e Talk around slide

e Demo: round(3.14159)

o argument: 3.14159

o value: 3
> round(3.14159)
[1] 3

SLIDE (Getting help for functions)
e Carrying on with round() from last slide
e What other arguments can round() take?
o Use args(fname)
> args(round)
function (x, digits = @)

NULL

e Canusethe digits argument by naming it, or not (but order matters)
> round(3.14159, digits=2)
[1] 3.14
> round(3.14159, 2)
[1] 3.14

e Best practice: always use the argument name

o clearer to others
o if function changes, order may change
o difficult to remember the purpose of each argument, if not explicit

¢ What does a function do?

o Use ?fname or help(fname) to getthe complete help text
o Demo: ?2round - go through main points

e What package is my function in?

o (i.e.lcan'tfind it, and don't know what to install)
o Demo: ??melt -show thatwe need reshape2

e |s there a function that does X?

o e.g. you know the name of a test, such as Kolmogorov-Smirnov

o Demo: help.search("smirnov") , ?ks.test

SLIDE (Where can | get more help?)
e Talk around slide
SLIDE (Asking the right questions)
e Talk around slide
e For dput() exampleuse dput(head(iris))

e Demo sessionInfo()

Functions

SLIDE (Functions)

SLIDE (Learning objectives)
e Talk around slide
¢ Why functions?

o You've already seen the power of functions, for encapsulating complex analyses into simple
commands
o Functions work similarly in R as they do in the shell/Python

SLIDE (What is a function?)

e Talk around slide

Defining a function
SLIDE (Defining a function)
e Talk around slide
e Create anew R scriptfile to hold functions

o File -> New File -> R Script
o File -> Save -> functions-lesson.R

o Check what's happened in Git tab
e Write new function in script

o Describe parts of function:
o prototype with inputs

o code block/body

o indentation (readability)

o addition, and return statements

o function scope, internal variables (readability)
o assignment of function to variable

o comments (readability)

Returns sum of two inputs
my_sum <- function(a, b) {
the _sum <- a + b
return(the_sum)
}
Converts fahrenheit to Kelvin
fahr_to_kelvin <- function(temp) {
kelvin <- ((temp - 32) * (5 / 9)) + 273.15
return(kelvin)

¢ Run the functions

o source the script
o tab-completion works!
o boiling and freezing points

> fahr_to_kelvin(32)
[1] 273.15
> fahr_to_kelvin(212)
[1] 373.15

SLIDE (Challenge 1)
Solution:
kelvin_to celsius <- function(temp) {

celsius <- temp - 273.15
return(celsius)

SLIDE (Challenge 2)
Solution:

fahr_to celsius <- function(temp) {
kelvin <- fahr_to_kelvin(temp)
celsius <- kelvin_to_celsius(kelvin)
return(celsius)

INSERTED EXAMPLE

Just as in Python, we can use for loops to apply a function to several values

Avoids repetition

for (i in 32:100) {
print(fahr_to_celsius(i))

}

Can also apply functions to vectors

l fahr_to celsius(32:100)

e Also if and if/else statements, as in Python:

if (5 > 1) {
print("condition is true")

}

if (5 < 1) {

print("condition is true")
} else {

print("condition is false")

}
e COMMIT TO LOCAL GIT REPO
SLIDE (Testing functions)
¢ Talk around slide
e Known good values

o water freezes at 32F/0C, boils at 212F/100C
> fahr_to celsius(32)
[1] o
> fahr_to_celsius(212)
[1] 100
e Known bad values

o All values are fair game on Fahrenheit/Celsius, but can't go below 0K

> kelvin_to_celsius(-10)
[1] -283.15

e We'd need to modify this for real use!

SLIDE (Not the best approach...)

