
Speaker Notes for the 2017-01-11 Software Carpentry R for Reproducible Scientific Analysis lesson

TYPE ALL EXAMPLES AS YOU GO. THIS KEEPS THE SPEED SANE, AND ALLOWS YOU TO
EXPLAIN EVERY STEP.

START SLIDES WITH reveal-md slides.md --theme=white

SLIDE (Why R / RStudio ?)

Talk around slide

SLIDE ("But I already know Excel!")

SLIDE ( R / RStudio  presentation)

Live presentation section
Everyone start up RStudio

Summarise windows

Four (maybe three) subwindows:
Interactive R  console
Editor (may be missing on startup - will appear when files are opened)
Environment/History
Files/Plots/Packages/Help

We're following practices of project management

We'll create a project directory, with Git  version control
Helps ensure data integrity
Makes sharing code easier (lab-mates, publication)
Easier to recover after a Christmas break

Create the new directory LIVE

SPEAKER_NOTES.md - R for Reproducible
Scientific Analysis

Introduction to R and RStudio

Create a working directory with version control



File->New Project

New Directory

Empty Project

Enter sensible name, e.g. swc-r_reproducible

Check box for Create a git repository

Create project

Describe contents of new folder
.gitignore

.Rproj

SLIDE (Best practices)

Talk around slide

SLIDE (Creating files/directories)

LIVE PRESENTATION
Create subdirectory for data

In Files  tab, create data  subdirectory

Create new R  script

File -> New File -> R script

save in working directory with sensible name, e.g. swc-script.R

LIVE VERSION CONTROL EXAMPLE
Show Git tab on right
Stage files

Three files shown (including .gitignore  and the new script file)
Yellow status markers mean they're not in the repository
Click check-boxes to stage them

Create directory structure



Note that we don't version disposable output

Commit files

Click Commit

Describe new dialogue window
Show contents/changes to files
Add commit message ("initialise repository") - good commit messages are short and imperative
Commit
Show commit summary
Exit

SLIDE (Challenge 1)

Run through challenge (5min?) - hint about editing .gitignore

Right-click link on presentation and download to data

Create graphs  subdirectory in Files  tab
Edit .gitignore  to add graphs/  folder and save
Stage .gitignore  in Git tab
Commit in Git tab, and add appropriate commit message
Demo History window for Git

SLIDE ( R  as a calculator)

Two ways

Type commands in the console
Use the script editor and save the script

Console

Output shown here
Good for experimentation
Commands 'forgotten' when you close a session

Script

Keeps record of what you did

Interacting with R



Easier to reproduce and share

Working at the console

R  shows a >  if it is expecting input

R  shows +  if it's waiting for completion ( Esc  to exit)

Working from script file

Can write same commands in the script file ( 1 + 100 )

Use Run  to execute
Use Ctrl-Enter  to execute
Output appears in the console
Show #  comments - good practice to comment
More examples (order of precedence):

Show Source  operation: add the following lines to script:

Run script

More examples
scientific notation

>	1	+	100
[1]	101

1
2

>	1	+
+	

1
2

>	3	+	5	*	2
[1]	13
>	(3	+	5)	*	2
[1]	16

1
2
3
4

#	Using	R	as	a	calculator	script	demo
1	+	100
3	+	5	*	2
(3	+	5)	*	2

1
2
3
4

>	#	Using	R	as	a	calculator	script	demo
>	1	+	100
[1]	101
>	3	+	5	*	2
[1]	13
>	(3	+	5)	*	2
[1]	16

1
2
3
4
5
6
7



General format: fn(arg)

autocompletion - example: factorial(6)

Return TRUE / FALSE  logical  values

Computer representation of numbers is approximate: important for comparisons
Any physicists/computer scientists in the room?
Numbers may not be equal, but be 'the same'
Use all.equal  instead of ==

>	1/40
[1]	0.025
>	2/10000
[1]	2e-04
>	5e3
[1]	5000

1
2
3
4
5
6

Mathematical functions

>	sin(1)
[1]	0.841471
>	log(1)
[1]	0
>	log10(10)
[1]	1
>	exp(0.5)
[1]	1.648721

1
2
3
4
5
6
7
8

Comparisons

>	1	==	1
[1]	TRUE
>	1	==	2
[1]	FALSE
>	1	!=	2
[1]	TRUE
>	1	<	2
[1]	TRUE
>	1	>	2
[1]	FALSE
>	1	<=	2
[1]	TRUE
>	1	>=	2
[1]	FALSE

1
2
3
4
5
6
7
8
9
10
11
12
13
14



Variables hold values, just like in Python

Two ways to assign variables: <-  and =

The <-  form is more widely used
Consistency more important than choice

Look at the Environment tab automatic updates

Variables can be used as arguments to functions

Variables can be used to reassign values to themselves

SLIDE (Good variable names)

Talk around slide

SLIDE (MCQ1)

>	all.equal(pi-1e-7,	pi)
[1]	"Mean	relative	difference:	3.183099e-08"
>	all.equal(pi-1e-8,	pi)
[1]	TRUE
>	pi-1e-8	==	pi
[1]	FALSE

1
2
3
4
5
6

Variables and assignment

>	x	<-	1/40
>	x
[1]	0.025
>	x	=	1/40
>	x
[1]	0.025

1
2
3
4
5
6

>	x	<-	1001

>	log(x)
[1]	4.60517
>	sqrt(x)
[1]	10

1
2
3
4

>	x
[1]	100
>	x	<-	x	+	1
>	x
[1]	101

1
2
3
4
5



Pose question

SLIDE (Package Management)

See what packages are installed with installed.packages()

demo this one

Add a new package using install.packages("packagename")

demo this one with install.packages("ggplot2")

Update packages with update.packages()

demo this one

You can remove a package with remove.packages("packagename")

To make a package available for use, use library(packagename)

demo
Note that there are no quotes, this time

SLIDE (Challenge 2)

Solution:

SLIDE (Functions, and getting help)

Talk around slide

Package management

>	ggplot()
Error:	could	not	find	function	"ggplot"
>	library(ggplot2)
Warning	message:
package	‘ggplot2’	was	built	under	R	version	3.2.3	
>	ggplot()
Warning	message:
In	max(vapply(evaled,	length,	integer(1)))	:
		no	non-missing	arguments	to	max;	returning	-Inf

1
2
3
4
5
6
7
8
9

install.packages("plyr")
install.packages("gapminder")
install.packages("dplyr")
install.packages("tidyr")

1
2
3
4

Getting help for functions



Demo: round(3.14159) :

argument: 3.14159

value: 3

SLIDE (Getting help for functions)

Carrying on with round()  from last slide

What other arguments can round()  take?

Use args(fname)

Can use the digits  argument by naming it, or not (but order matters)

Best practice: always use the argument name

clearer to others
if function changes, order may change
difficult to remember the purpose of each argument, if not explicit

What does a function do?

Use ?fname  or help(fname)  to get the complete help text
Demo: ?round  - go through main points

What package is my function in?

(i.e. I can't find it, and don't know what to install)
Demo: ??melt  - show that we need reshape2

Is there a function that does X?

e.g. you know the name of a test, such as Kolmogorov-Smirnov
Demo: help.search("smirnov") , ?ks.test

>	round(3.14159)
[1]	3

1
2

>	args(round)
function	(x,	digits	=	0)	
NULL

1
2
3

>	round(3.14159,	digits=2)
[1]	3.14
>	round(3.14159,	2)
[1]	3.14

1
2
3
4



SLIDE (Where can I get more help?)

Talk around slide

SLIDE (Asking the right questions)

Talk around slide

For dput()  example use dput(head(iris))

Demo sessionInfo()

SLIDE (Functions)

SLIDE (Learning objectives)

Talk around slide

Why functions?

You've already seen the power of functions, for encapsulating complex analyses into simple
commands
Functions work similarly in R  as they do in the shell/Python

SLIDE (What is a function?)

Talk around slide

SLIDE (Defining a function)

Talk around slide

Create a new R  script file to hold functions

File -> New File -> R Script

File -> Save -> functions-lesson.R

Check what's happened in Git tab

Write new function in script

Describe parts of function:
prototype with inputs

Functions

Defining a function



code block/body
indentation (readability)
addition, and return statements
function scope, internal variables (readability)
assignment of function to variable
comments (readability)

Run the functions

source  the script
tab-completion works!
boiling and freezing points

SLIDE (Challenge 1)

Solution:

SLIDE (Challenge 2)

Solution:

#	Returns	sum	of	two	inputs
my_sum	<-	function(a,	b)	{
		the_sum	<-	a	+	b
		return(the_sum)
}
#	Converts	fahrenheit	to	Kelvin
fahr_to_kelvin	<-	function(temp)	{
		kelvin	<-	((temp	-	32)	*	(5	/	9))	+	273.15
		return(kelvin)
}

1
2
3
4
5
6
7
8
9
10

>	fahr_to_kelvin(32)
[1]	273.15
>	fahr_to_kelvin(212)
[1]	373.15

1
2
3
4

kelvin_to_celsius	<-	function(temp)	{
		celsius	<-	temp	-	273.15
		return(celsius)
}

1
2
3
4

fahr_to_celsius	<-	function(temp)	{
		kelvin	<-	fahr_to_kelvin(temp)
		celsius	<-	kelvin_to_celsius(kelvin)
		return(celsius)
}

1
2
3
4
5



INSERTED EXAMPLE

Just as in Python, we can use for  loops to apply a function to several values
Avoids repetition

Can also apply functions to vectors

Also if  and if/else  statements, as in Python:

COMMIT TO LOCAL GIT REPO

SLIDE (Testing functions)

Talk around slide

Known good values

water freezes at 32F/0C, boils at 212F/100C

Known bad values

All values are fair game on Fahrenheit/Celsius, but can't go below 0K

We'd need to modify this for real use!

for	(i	in	32:100)	{
		print(fahr_to_celsius(i))
}

1
2
3

fahr_to_celsius(32:100)1

if	(5	>	1)	{
		print("condition	is	true")
}

1
2
3

if	(5	<	1)	{
		print("condition	is	true")
}	else	{
		print("condition	is	false")
}

1
2
3
4
5

>	fahr_to_celsius(32)
[1]	0
>	fahr_to_celsius(212)
[1]	100

1
2
3
4

>	kelvin_to_celsius(-10)
[1]	-283.15

1
2



SLIDE (Not the best approach…)


