
These notes are for the tutor on day one of the two-day R  Software Carpentry course, taught 5th
December 2017 at the University of St Andrews.

To clear a console environment in R :

Programming in R : Part One

Please use the Etherpad for the course

We're being QUITE AMBITIOUS, and covering a few things, but we HAVE TWO SESSIONS, so
should be OK
We'll be covering the fundamentals of R  and RStudio  - how to GET AROUND R  AND WHAT
RStudio  CAN DO

You'll come away with fundamental knowledge applicable to PROGRAMMING IN ANY LANGUAGE
We'll be learning some of the best practices for writing and organising your code (FOLLOWING ON
FROM GIT) and for reproducible computing
Finally, we'll be going through how to use these skills to be MORE EFFECTIVE WITH DATA
ANALYSIS in R

SLIDE: Learning Objectives

NOTES.md  - R  lesson

THINGS TO REMEMBER

rm(list=ls())1

Start the slides

TITLE

ETHERPAD

LEARNING OBJECTIVES

SECTION 01: Introduction to R  and RStudio



We're going to talk in general terms about WHAT R  and RSTUDIO  are.
We're also going to discuss WHAT MAKES THEM DIFFERENT FROM SOME OTHER TOOLS you
might already use for similar tasks, like Excel

SLIDE: What is R ?

R  is a PROGRAMMING LANGUAGE, and the SOFTWARE that runs programs written in that
language.
R  is AVAILABLE ON ALL PLATFORMS

This can sometimes be confusing - IF AT ANY POINT I AM UNCLEAR, PLEASE ASK!

HAS ANYONE IN THE ROOM USED R  BEFORE? - GREEN STICKY

If anyone has used R , please could you be available to help one of your neighbours who has
not, if they have any questions. Look around you - if there's someone nearby with a green sticky,
say 'hi'!

WHY USE OR TEACH R ?

R  is FREE, and very WIDELY-USED across a range of disciplines.
There are MANY USEFUL PACKAGES or data analysis and statistics
It has excellent GRAPHICS CAPABILITIES
There is an international, friendly COMMUNITY across a range of disciplines, so it's easy to find
local and online support

SLIDE: But I already know Excel

I'm NOT HERE TO CRITICISE EXCEL . Excel  is brilliant at what it's meant to do. It's
POWERFUL and INTUITIVE.
But R  HAS MANY ADVANTAGES FOR REPRODUCIBLE AND COMPLEX ANALYSIS

A key thing for reproducibility is that it SEPARATES DATA FROM ANALYSIS.

In R , when you do anything to the original data, that original data remains unmodified (unless
you overwrite the file).
POINT OF GOOD PRACTICE: RAW DATA SHOULD BE READ-ONLY
In Excel  however it's easy to overwrite data with copy-and-paste (and many bad things have
happened as a result) - see Mike Croucher's talk for examples.

Because YOUR ANALYSIS IN R  IS A PROGRAM, every step is written down explicitly, and is
transparent and understandable by someone else.

In Excel , there is no clear record of where you moved your mouse, or what you copied and
pasted, and it's not immediately obvious how your formulas work.



R  code is EASY TO SHARE AND ADAPT, and to apply again to a different or a modified input
dataset. It's easy to publish the analyses via online resources, such as GitHub.

R  code can also be RUN ON EXTREMELY LARGE DATASETS, quickly. That's much harder in
Excel .

SLIDE: What is RStudio ?

RStudio  is an INTEGRATED DEVELOPMENT ENVIRONMENT - which is to say it's a very
powerful tool for writing and using R  and programs in the R  language.

It's available on ALL PLATFORMS
It's available as a webserver, too.

On the left is a screenshot WHILE I WAS WRITING THIS PRESENTATION IN RSTUDIO on a Mac

On the right is the Windows version, with an EXAMPLE ANALYSIS AND VISUALISATION

You can use it to INTERACT WITH R  DIRECTLY TO EXPERIMENT WITH DATA

It has a CODE/SCRIPT EDITOR FOR WRITING PROGRAMS

It has tools for VISUALISING DATA

It has built-in GIT INTEGRATION FOR MANAGING YOUR PROJECTS

SLIDE: Learning Objectives

We need to get some FAMILIARITY WITH OUR WORKING ENVIRONMENT: the RStudio  IDE
Develop some BEST PRACTICES FOR PROJECT MANAGEMENT in general, and in RStudio

We'll BUILD UPON THE GIT  LESSON because RStudio  integrates naturally with git  to
keep all your analysis and code under version control.
We'll introduce R  syntax, and SEE HOW R  REPRESENTS DATA and how to PROGRAM IN R

If we have time we'll deal with MANAGING SOME OF THE MANY USEFUL PACKAGES available in
R

SLIDE: RStudio  overview - Interactive Demo

START RStudio  (click icon/go into start menu and select RStudio/etc.)

CHECK EVERYONE CAN START RSTUDIO

 SECTION 02: Getting To Know RStudio



REMIND PEOPLE THEY CAN USE RED/GREEN STICKIES AT ANY TIME
You should see THREE PANELS

Interactive R  console: you can type here and get instant feedback
Environment/History window
Files/Plots/Packages/Help/Viewer: interacting with files on the computer, and viewing help
and some output

We're going to use R  in the interactive console to get used to some of the features of the language,
and RStudio . DEMO CODE: ASK PEOPLE TO TYPE ALONG

THE RIGHT ANGLED BRACKET IS A PROMPT: R  EXPECTS INPUT
TYPE THE CALCULATION, THEN PRESS RETURN

RESULT IS INDICATED WITH A NUMBER [1]  this indicates the line with output in it
If you type an INCOMPLETE COMMAND, R  will wait for you to complete it

DEMO CODE

The PROMPT CHANGES TO +  WHEN R  EXPECTS MORE INPUT
You can either complete the line, or use Esc  ( Ctrl-C ) to exit

R  obeys the usual PRECEDENCE OPERATIONS ( ( , ** / ^ , / , * , + , - )

DEMO CODE: NOTE SPACES AROUND OPERATORS

>	1	+	100
[1]	101
>	30	/	3
[1]	10

1
2
3
4

>	1	+
+	

1
2

>	1	+
+	6
[1]	7
>	1	+	
+	

>	

1
2
3
4
5
6
7



ARROW KEYS RECOVER OLD COMMANDS
THE HISTORY  TAB SHOWS ALL COMMANDS USED
R  will report in SCIENTIFIC NOTATION

CHECK THAT EVERYONE KNOWS WHAT SCIENTIFIC NOTATION IS

R  has many STANDARD MATHEMATICAL FUNCTIONS
FUNCTION SYNTAX

type the function name
open parentheses
type input value
close parentheses
press return
DEMO CODE

How do we learn more about a function, or the difference between log()  and log10() ?

>	3	+	5	*	2
[1]	13
>	(3	+	5)	*	2
[1]	16
>	3	+	5	*	2	^	2
[1]	23
>	3	+	5	*	(2	^	2)
[1]	23

1
2
3
4
5
6
7
8

>	2	/	1000
[1]	0.002
>	2	/	10000
[1]	2e-04
>	5e3
[1]	5000

1
2
3
4
5
6

>	sin(1)
[1]	0.841471
>	log(1)
[1]	0
>	log10(10)
[1]	1
>	log(10)
[1]	2.302585
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USE R  BUILT-IN HELP

Type ?  then the function name
Scroll to the bottom of the page to find example code

This brings up help in the HELP WINDOW
You can also use the SEARCH BOX at the top of the help window (try sin() )
If you're not sure about spelling, the editor has AUTOCOMPLETION which will suggest all possible
endings for something you type (try log ) - USE TAB TO SEE AUTOCOMPLETIONS

We can do COMPARISONS in R

Comparisons return TRUE  or FALSE . DEMO CODE
NOTE: when comparing numbers, it's better to use all.equal()  (machine numeric
tolerance) ASK IF THERE'S ANYONE FROM MATHS/PHYSICS

SLIDE: Challenge 01

>	?log1

>	1	==	1
[1]	TRUE
>	1	!=	2
[1]	TRUE
>	1	<	2
[1]	TRUE
>	1	<=	1
[1]	TRUE
>	1	>	0
[1]	TRUE
>	1	>=	-9
[1]	TRUE
>	all.equal(1.0,	1.0)
[1]	TRUE
>	all.equal(1.0,	1.1)
[1]	"Mean	relative	difference:	0.1"
>	all.equal(pi-1e-7,	pi)
[1]	"Mean	relative	difference:	3.183099e-08"
>	all.equal(pi-1e-8,	pi)
[1]	TRUE
>	pi-1e-8	==	pi
[1]	FALSE
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SLIDE: Variables

VARIABLES are critical to programming in general, and also to working in R

Variables are like NAMED BOXES

Like a box, they HOLD THINGS
When we make reference to a box's name, we MEAN THE THING THE BOX CONTAINS

Here, the box is called Name , and it contains the word Samia

When we refer to the box, we call it Name , and we might ask questions like:

"What is the length of Name ?", meaning "What is the length of the word in the box called
Name ?" (answer: 5)

SLIDE: Variables - Interactive Demo

This is a very important concept, so we're going to go through some practical examples, to reinforce it
In R , variables are assigned with the ASSIGNMENT OPERATOR <-

We will assign the value 1/40  to the variable x

DEMO CODE

At first, nothing seems to happen, but we can see that the variable x  now exists, and contains the
value 0.025  - a DECIMAL APPROXMATION of the fraction 1/40

CLICK ON THE ENVIRONMENT WINDOW

You should see that x  is defined, there

The Environment window in RStudio  tells you the name and content of every variable currently
active in your R  session.

This VARIABLE CAN BE USED ANYWHERE THAT EXPECTS A NUMBER

such as an argument to a function

>	x	<-	1	/	401

>	x
[1]	0.025

1
2



We can REASSIGN VALUES TO VARIABLES

MONITOR THE VALUE OF x  IN THE ENVIRONMENT WINDOW
We can also assign a variable to itself, to modify the variable

We can assign ANY KIND OF VALUE to a variable

Including STRINGS - i.e. sets of characters

But BE CAREFUL - R  is not always intuitive

Strings in particular may not work the way you expect

SLIDE: Functions

You've now used some functions. These are like "canned scripts"
Functions have THREE MAIN PURPOSES

They ENCAPSULATE COMPLEX TASKS - you don't need to worry about how a sine is
calculated, just that you give the function a value, and it tells you what the sine is.
They MAKE CODE MORE READABLE - by dividing code into logical operations, represented by
short names, the code is easier to read
They also MAKE CODE MORE REUSABLE - you don't need to write the routine for finding a
square root every time you want one, you just need to call the sqrt()  function

>	log(x)
[1]	-3.688879
>	sin(x)
[1]	0.0249974
>	x	+	x
[1]	0.05
>	2	*	x
[1]	0.05
>	x	^	2
[1]	0.000625
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>	x	<-	100
>	x	<-	x	+	5

1
2

>	name	<-	"Samia"
>	name
[1]	"Samia"

1
2
3

>	length(name)
[1]	1
>	nchar(name)
[1]	5

1
2
3
4



ALL THE FUNCTIONS YOU'VE SEEN ARE BUILT-IN, the so-called base  functions
OTHER FUNCTIONS FOR SPECIFIC TASKS CAN BE BROUGHT IN, THROUGH libraries

Functions usually TAKE ARGUMENTS (input), e.g. sqrt(4)  - the 4  is an argument

Functions often RETURN values (output), e.g. sqrt(4)  returns the value 2

SLIDE: Getting Help for Functions

DEMO IN CONSOLE

SLIDE: Removing Variables

To remove ONE OR MORE SPECIFIED VARIABLES, use rm()

ls()  IS A FUNCTION THAT LISTS VARIABLES (like the Environment tab)
DEMO CODE

SLIDE: Challenge 02

>	args(lm)
function	(formula,	data,	subset,	weights,	na.action,	method	=	"qr",	
				model	=	TRUE,	x	=	FALSE,	y	=	FALSE,	qr	=	TRUE,	singular.ok	=	TRUE,	
				contrasts	=	NULL,	offset,	...)	
NULL
>	?sqrt
>	help(sqrt)
>	??sqrt
>	help.search("sqrt")
>	help.search("categorical")
>	vignette(two-table)
Error	in	vignette(two	-	table)	:	object	'two'	not	found
>	vignette("two-table")
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>	x	<-	1
>	y	<-	2
>	z	<-	3
>	ls()
[1]	"x"	"y"	"z"
>	rm(x)
>	ls()
[1]	"y"	"z"
>	rm(y,	z)
>	ls()
character(0)
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Solution:

mass <- 47.5  This will give a value of 47.5 for the variable mass

age <- 122  This will give a value of 122 for the variable age

mass <- mass * 2.3  This will multiply the existing value of 47.5 by 2.3 to give a new value of 109.25
to the variable mass.

age <- age - 20  This will subtract 20 from the existing value of 122 to give a new value of 102 to the
variable age.

SLIDE: Good Variable Names

Good variable names SHOULD HELP YOU DESCRIBE WHAT'S GOING ON

Helpful FOR YOU AND FOR OTHERS

It's better to avoid using names that already exist
Use a CONSISTENT NAMING STYLE

Rules for VARIABLE NAMES DIFFER BETWEEN LANGUAGES

IN R

You can only use LETTERS, NUMBERS, UNDERSCORES, AND PERIODS
You can't start variable names with a number
You can't use whitespace in a variable name

SLIDE: Good Project Management Practices

There is NO SINGLE GOOD WAY TO ORGANISE A PROJECT

It's important to find something that WORKS FOR YOU
But it's ALSO IMPORTANT THAT IT WORKS FOR COLLABORATORS
Some PRINCIPLES MAKE THINGS EASIER FOR EVERYONE

Using a SINGLE WORKING DIRECTORY PER PROJECT/ANALYSIS

NAME IT AFTER THE PROJECT
EASY TO PACKAGE UP the whole directory and move it around, or share it - OR PUBLISH



ALONGSIDE YOUR PAPER
NO NEED TO HUNT AROUND THE WHOLE DISK to find relevant or important files.
You can use RELATIVE PATHS that will always work, so long as you work within the project
directory

Treat your RAW DATA AS READ-ONLY

Establishes PROVENANCE and ENABLES REANALYSIS
Keep in SEPARATE SUBFOLDER

CLEAN THE DATA PROGRAMMATICALLY (part of the analysis chain)

Remove/fill in null values, etc. - whatever is appropriate
KEEP CLEANED DATA SEPARATE FROM RAW - like food hygiene

GENERATED OUTPUT IS DISPOSABLE

This means ANYTHING GENERATED AUTOMATICALLY BY YOUR CODE/ANALYSIS
If a file can be generated by scripts/code in your project, no need to put it under version control

SLIDE: Example Directory Structure

This is ONE WAY TO STRUCTURE YOUR WORKING DIRECTORY

It's a good starting point, but something else might be more appropriate for your own work

WORKING DIR/  is the root directory of the project.

Everything related to the project (subdirectories of data, scripts and figures; git  files;
configuration files; notes to yourself; whatever)

data/  is a subdirectory for storing data

raw data only, or raw and intermediate data? YOUR DECISION
data/raw , data/intermediate  - USE SUBFOLDERS WHEN SENSIBLE

data_output/  could be a place to write the analysis output ( .csv  files etc.)

documents/  is a place where notes, drafts, and explanatory text could be stored

fig_output/  could be a place to write graphical output of the analysis (keep separate from tables)

scripts  might be where you would choose to keep executable code that automates your analysis

The important thing is that the structure is SELF-EXPLANATORY WHERE POSSIBLE



SLIDE: Project Management in RStudio

RStudio  TRIES TO BE HELPFUL and provides the 'Project' concept

Keeps ALL PROJECT FILES IN A SINGLE DIRECTORY
INTEGRATES WITH GIT

Enables switching between projects within RStudio

Keeps project histories

INTERACTIVE DEMO

CREATE PROJECT

Click File  -> New Project

Options for how we want to create a project: brand new in a new working directory; turn an
existing directory into a project; or checkout a project from GitHub  or some other repository

Click New Directory

Options for various things we can do in RStudio . Here we want New Project

Click New Project

We are asked for a directory name. ENTER swc-r-lesson

We are asked for a parent directory. PUT YOURS ON THE DESKTOP; STUDENTS CAN
CHOOSE ANYWHERE SENSIBLE
SELECT Create a git repository  - this will create and initialise a git  repository, just
for this project

Click Create Project

YOU SHOULD SEE AN EMPTY-ISH RSTUDIO  WINDOW

INSPECT PROJECT ENVIRONMENT

First, NOTE THE WINDOWS: editor; environment; files

EDITOR is empty

ENVIRONMENT is empty

FILES shows

CURRENT WORKING DIRECTORY (see breadcrumb trail)
TWO FILES: *.Rproj  - information about your project; .gitignore  - your project's
.gitignore  file (remember the git  lesson?)



CLICK ON GIT  TAB

We see that the files are not yet added to the project (status is ? )
CHECK BOXES TO STAGE FILES
CLICK ON DIFF  TO SEE CHANGES (note colours, lines, etc.)
CLICK ON COMMIT  TO COMMIT CHANGES
WRITE COMMIT MESSAGE (add .gitignore and R project files to repo)
CLICK COMMIT  (explain message)

CREATE DIRECTORIES IN PROJECT

Create directoris called scripts  and data

Click on New Folder

Enter directory name ( scripts )
Note that the directory now exists in the Files  tab (but not in the git  tab, as the directory is
empty)
Do the same for data/

NOTE THAT WE WILL NOW POPULATE THE DIRECTORY

SLIDE: Working in RStudio

RStudio  offers SEVERAL WAYS TO WRITE CODE

We'll not see all of them today
You've seen DIRECT INTERACTION IN THE CONSOLE (entering variables)
RStudio  also has an editor for writing scripts, notebooks, markdown documents, and Shiny

applications (EXPLAIN BRIEFLY)
It can also be used to write plain text

INTERACTIVE DEMO OF R  SCRIPT

Click on File  -> New File  -> Text File . NOTE THAT THE EDITOR WINDOW OPENS

Enter the following text, and EXPLAIN CSV

plain text file
one row per line
column entries separated by commas
first row is header data
NEEDS A BLANK LINE AT THE END
DATA DESCRIBES CATS



SAVE THE FILE AS data/feline_data.csv

Click on disk icon
Navigate to data/  subdirectory
Enter filename feline_data.csv

NOTE CHANGES IN GIT  TAB

The data  directory appears!
Click on Staged  and THE FILE APPEARS
Click Commit  and add a commit string, e.g. "add cat dataset"

CLOSE THE EDITOR FOR THAT FILE

Click on File  -> New File  -> R Script .

EXPLAIN COMMENTS while entering the code below

COMMENTS ANNOTATE YOUR CODE: reminders for you, and information for others

EXPLAIN read.csv()

read.csv()  is a FUNCTION that reads data from a CSV-FORMAT FILE into a variable in R

SAVE THE SCRIPT

Click on File  -> Save

Navigate to the scripts/  subdirectory
Enter filename data_structures  (EXTENSION IS AUTOMATICALLY APPLIED) NOTE
CHANGES IN GIT  TAB
The scripts  directory appears!
Click on Staged  and the file appears
Click on Commit  and add a commit string, e.g. "add data structures script"

DO YOU SEE THE VARIABLE IN THE ENVIRONMENT?

NO - because the code hasn't been executed, only written.

coat,weight,likes_string
calico,2.1,1
black,5.0,0
tabby,3.2,1

1
2
3
4

#	Script	for	exploring	data	structures

#	Load	cat	data	as	a	dataframe
cats	<-	read.csv(file	=	"data/feline_data.csv")

1
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RUN THE SCRIPT

Click on Source  and NOTE THIS RUNS THE WHOLE SCRIPT

Go to the Environment  tab

NOTE THE DATA WAS LOADED IN THE VARIABLE cats

Note that there is a description of the data (3 obs. of 3 variables)
CLICK ON THE VARIABLE AND NOTE THAT THE TABLE IS NOW VISIBLE - this is helpful
YOU CANNOT EDIT THE DATA IN THIS TABLE - you can sort and filter, but not modify the data.
This ENFORCES GOOD PRACTICE (compare to Excel).

SLIDE: 03. A First Analysis in RStudio

SLIDE: Learning Objectives

We're going to cover some ways of loading data into an R  project/analysis
We'll EXPLORE SOME FUNCTIONS FOR SUMMARISING DATA
Sometimes we want to use only a portion of our data, and we'll see some WAYS OF INDEXING
DATASETS
We'll also look at some ways to PLOT DATA IN R, using the built-in base graphics

SLIDE: Our Task

We've got some medical data relating to a new treatment for arthritis
There are some measurements of patient inflammation, taken over a period of days post-treatment for
each patient
We've been ASKED TO PRODUCE A SUMMARY AND SOME GRAPHS

DOWNLOAD THE FILE FROM THE LINK TO data/

EXPLAIN THE LINK IS ON THE ETHERPAD PAGE (no need to type!)

DEMO THIS

NOTE: A new directory is created within data , called data . THIS IS UNTIDY, SO LET'S
CLEAN
COPY ALL FILES BEGINNING WITH inflammation  TO THE PARENT FOLDER
THEN DELETE THE SUBFOLDER AND ZIP FILE
ADD THE DATA FILES TO THE REPO (can shift-click, here)

CHECK EVERYONE'S READY TO PROCEED



SLIDE: Loading Data - Interactive Demo

We've already created some cat data manually, but THIS IS UNUSUAL - most data comes in the form
of plain text files

START DEMO * INSPECT DATA IN FILES WINDOW * Click on filename, and select View File  * Note:
THERE IS NO HEADER and THERE ARE NO ROW NAMES * Ask: IS THIS WELL-FORMATTED DATA?
* I happen to know that there is one row per patient, and the columns are days, in turn, post-treatment,
and measurements are inflammation levels * WHAT IS THE DATA TYPE * Tabular, with EACH
COLUMN SEPARATED BY A COMMA, so CSV * IN THE CONSOLE use read.csv()  to read the data
in * Note: IF WE DON'T ASSIGN THE RESULT TO A VARIABLE WE JUST SEE THE DATA * CREATE A
NEW SCRIPT * Click the triangle next to the new document icon * Add the code and SAVE AS
scripts/inflammation  ( RStudio  adds the extension) * See that the file appears in Files  and
Git  windows

INSPECT THE DATA

Source  the script
Check the Environment  window: 60 observations (patients) of 40 variables (days)
CLICK ON data

COLUMN HEADERS ARE PROVIDED: Vn  for variable n
dim()  - dimensions of data: rows X columns
length()  - number of columns in the table
ncol()  - number of columns in the table
nrow()  - number of rows in the table

#	Preliminary	analysis	of	inflammation	in	arthritis	patients

#	Load	data	(no	headers,	CSV)
data	<-	read.csv(file	=	"data/inflammation-01.csv",	header	=	FALSE)
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SLIDE: Challenge 03

SOLUTION

SLIDE: Indexing Data

We can refer to an element in our dataset by indexing it

We LOCATE A SINGLE ELEMENT as [row, column]  in square brackets

To get a RANGE OF VALUES, use the :  separator to mean 'to':

>	head(data,	n	=	2)
		V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23	V24	V25	V26
1		0		0		1		3		1		2		4		7		8			3			3			3		10			5			7			4			7			7		12		18			6		13		11		11			7			7
2		0		1		2		1		2		1		3		2		2			6		10		11			5			9			4			4			7		16			8			6		18			4		12			5		12			7
		V27	V28	V29	V30	V31	V32	V33	V34	V35	V36	V37	V38	V39	V40
1			4			6			8			8			4			4			5			7			3			4			2			3			0			0
2		11			5		11			3			3			5			4			4			5			5			1			1			0			1
>	dim(data)
[1]	60	40
>	length(data)
[1]	40
>	ncol(data)
[1]	40
>	nrow(data)
[1]	60

1
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read.csv(file='file.csv',	sep=';',	dec=',')1

>	ncol(data)
[1]	40
>	data[1,1]
[1]	0
>	data[50,1]
[1]	0
>	data[50,20]
[1]	16
>	data[30,20]
[1]	16
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To get a WHOLE ROW OR COLUMN, leave that entry blank

SLIDE: Summary Functions - Interactive Demo

R  was designed for data analysis, so has many built-in functions for analysing and describing data

TALK THROUGH CODE IN CONSOLE

SLIDE: Challenge 04

>	data[1:4,	1:4]			#	rows	1	to	4;	columns	1	to	4
		V1	V2	V3	V4
1		0		0		1		3
2		0		1		2		1
3		0		1		1		3
4		0		0		2		0
>	data[30:32,	20:22]
			V20	V21	V22
30		16		14		15
31		16		13			7
32			9		19		15
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>	data[5,]
		V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23	V24	V25	V26
5		0		1		1		3		3		1		3		5		2			4			4			7			6			5			3		10			8		10			6		17			9		14			9			7		13			9
		V27	V28	V29	V30	V31	V32	V33	V34	V35	V36	V37	V38	V39	V40
5		12			6			7			7			9			6			3			2			2			4			2			0			1			1
>	data[,16]
	[1]		4		4	15		8	10	15	13		9	11		6		3		8	12		3		5	10	11		4	11	13	15		5	14	13		4		9	13		6		7		6	14
[32]		3	15		4	15	11		7	10	15		6		5		6	15	11	15		6	11	15	14		4	10	15	11		6	13		8		4	13	12		9
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>	max(data)
[1]	20
>	max(data[2,])
[1]	18
>	max(data[,7])
[1]	6
>	min(data[,7])
[1]	1
>	mean(data[,7])
[1]	3.8
>	median(data[,7])
[1]	4
>	sd(data[,7])
[1]	1.725187
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SLIDE: Repetitive Calculations - Interactive Demo

We might want to CALCULATE MEAN INFLAMMATION FOR EACH PATIENT, but doing it the way
we've just seen is tedious and slow.
Happily COMPUTERS WERE INVENTED TO SAVE US THE HASSLE
We could automate this task in any of several ways available in R

What we'd like to do is APPLY A FUNCTION TO EACH ROW
R  has an apply()  function exactly for this

IN THE CONSOLE

IN OUR ANALYSIS SCRIPT we want to assign these values to a variable, and ALSO CALCULATE
AVERAGE BY DAY

So long as we provide arguments in the correct order, WE DON'T NEED TO PROVIDE
ARGUMENT NAMES - true for most R  functions

>	animal	<-	c('m',	'o',	'n',	'k',	'e',	'y')
>	animal[1:3]
[1]	"m"	"o"	"n"
>	animal[4:6]
[1]	"k"	"e"	"y"
>	animal[3:1]
[1]	"n"	"o"	"m"
>	animal[-1]
[1]	"o"	"n"	"k"	"e"	"y"
>	animal[-4]
[1]	"m"	"o"	"n"	"e"	"y"
>	animal[-1:-4]
[1]	"e"	"y"
>	animal[-1:4]
Error	in	animal[-1:4]	:	only	0's	may	be	mixed	with	negative	subscripts
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>	apply(X	=	data,	MARGIN	=	1,	FUN	=	mean)
	[1]	5.450	5.425	6.100	5.900	5.550	6.225	5.975	6.650	6.625	6.525	6.775	5.800	6.225	5.750	5.225
[16]	6.300	6.550	5.700	5.850	6.550	5.775	5.825	6.175	6.100	5.800	6.425	6.050	6.025	6.175	6.550
[31]	6.175	6.350	6.725	6.125	7.075	5.725	5.925	6.150	6.075	5.750	5.975	5.725	6.300	5.900	6.750
[46]	5.925	7.225	6.150	5.950	6.275	5.700	6.100	6.825	5.975	6.725	5.700	6.250	6.400	7.050	5.900
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RUN THE LINES

Note that the values appear in the Environment tab

Like many common operations, there's an R  function that's a shortcut

IN THE CONSOLE

SLIDE: Base Graphics

We're doing all this work to try to GAIN INSIGHT INTO OUR DATA
VISUALISATION IS A KEY ROUTE TO INSIGHT

R  has many graphics packages - some of which produce extremely beautiful images, or are tailored
to a specific problem domain

The built-in graphics are known as base graphics

They may not be as pretty, or as immediately suited for all circumstances as some other packages, but
they are still very powerful

SLIDE: Plotting - Interactive Demo

IN THE SCRIPT

#	Calculate	average	inflammation	by	patient	and	day
avg_inflammation_patient	<-	apply(X	=	data,	MARGIN	=	1,	FUN	=	mean)
avg_inflammation_day	<-	apply(data,	2,	mean)
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>	rowMeans(data)
	[1]	5.450	5.425	6.100	5.900	5.550	6.225	5.975	6.650	6.625	6.525	6.775	5.800	6.225	5.750	5.225
[16]	6.300	6.550	5.700	5.850	6.550	5.775	5.825	6.175	6.100	5.800	6.425	6.050	6.025	6.175	6.550
[31]	6.175	6.350	6.725	6.125	7.075	5.725	5.925	6.150	6.075	5.750	5.975	5.725	6.300	5.900	6.750
[46]	5.925	7.225	6.150	5.950	6.275	5.700	6.100	6.825	5.975	6.725	5.700	6.250	6.400	7.050	5.900
>	colMeans(data)
								V1									V2									V3									V4									V5									V6									V7									V8									V9	
	0.0000000		0.4500000		1.1166667		1.7500000		2.4333333		3.1500000		3.8000000		3.8833333		5.2333333	
							V10								V11								V12								V13								V14								V15								V16								V17								V18	
	5.5166667		5.9500000		5.9000000		8.3500000		7.7333333		8.3666667		9.5000000		9.5833333	10.6333333	
							V19								V20								V21								V22								V23								V24								V25								V26								V27	
11.5666667	12.3500000	13.2500000	11.9666667	11.0333333	10.1666667	10.0000000		8.6666667		9.1500000	
							V28								V29								V30								V31								V32								V33								V34								V35								V36	
	7.2500000		7.3333333		6.5833333		6.0666667		5.9500000		5.1166667		3.6000000		3.3000000		3.5666667	
							V37								V38								V39								V40	
	2.4833333		1.5000000		1.1333333		0.5666667	
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R 's plot()  FUNCTION IS GENERAL AND WORKS FOR MANY KINDS OF DATA
RUN EACH LINE IN TURN
NOTE WHERE PLOTS SHOW (Plot window)
Opportunity to note: VARIABLES HELP READABILITY
USE ARROW BUTTONS to cycle through plots
COMMIT CHANGES WHEN DONE

THE hist()  FUNCTION PLOTS A HISTOGRAM OF INPUT DATA FREQUENCY/COUNT

The choice of bin sizes/breaks could be improved
We need to PROVIDE THE BOUNDARIES BETWEEN BINS
IN THE CONSOLE

We'd have to TYPE IN A LOT OF NUMBERS to get smaller breaks, which is SLOW

The seq()  function generates a sequence of numbers for us

We can SET THE INTERVAL OF THE SEQUENCE

IN THE SCRIPT

#	Plot	data	summaries
#	Average	inflammation	by	patient
plot(avg_inflammation_patient)

#	Average	inflammation	per	day
plot(avg_inflammation_day)

#	Maximum	inflammation	per	day
max_inflammation_day	<-	apply(data,	2,	max)
plot(max_inflammation_day)

#	Minimum	inflammation	per	day
plot(apply(data,	2,	min))

#	Show	a	historgram	of	average	patient	inflammation
hist(avg_inflammation_patient)
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hist(avg_inflammation_patient,	breaks=c(5,	6,	7,	8))1

>	seq(5,	8)
[1]	5	6	7	8
>	hist(avg_inflammation_patient,	breaks=seq(5,	8))
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>	seq(5,	8,	by=0.2)
	[1]	5.0	5.2	5.4	5.6	5.8	6.0	6.2	6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0
>	hist(avg_inflammation_patient,	breaks=seq(5,	8,	by=0.2))
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Add a line with the histogram for average patient inflammation

IN THE SCRIPT

Demonstrate changing the input file
CHANGING FILENAME IN A SCRIPT IS QUICKER THAN RETYPING ALL THE COMMANDS

SLIDE: Challenge 05

SLIDE: 04. Data Structures in R

SLIDE: Learning Objectives

In this section, you'll be learning about the data types in R : WHAT DATA IS
You'll also be learning about the data structures: WHAT DATA IS BUILT INTO - HOW IT IS
ARRANGED
And you'll also learn how to find out what type/structure a particular piece of data has
Putting it together, you'll see how R 's data types and structures relate to the types of data that you
work with, yourself.

SLIDE: Data Types and Structures in R

R  is MOSTLY USED FOR DATA ANALYSIS
R  is set up with key, core data types designed to help you work with your own data

A lot of the time, R  focuses on tabular data (like our cat example)
INTERACTIVE DEMO

SWITCH TO THE CONSOLE (Establish that cats  is available as a variable)

If you type cats , you get a nice tabular representation of your data

#	Show	a	historgram	of	average	patient	inflammation
hist(avg_inflammation_patient,	breaks=seq(5,	8,	by=0.2))

1
2

#	Plot	standard	deviation	by	day
plot(apply(data,	2,	sd))
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THINK ABOUT THE DATA TYPES Are they all the same?

NO coat  is text; weight  is some real value (in kg or pounds, maybe), and
likes_string  looks like it should be TRUE / FALSE

DOES IT MAKE SENSE TO WORK WITH THEM AS IF THEY'RE THE SAME THING? (No)

EXTRACT A COLUMN FROM A TABLE

Use $  notation in the console
NOTE THE AUTOCOMPLETION

WHAT DID R  RETURN?

A vector (1D ordered collection) of numbers

**WE CAN OPERATE ON THESE VECTORS **

Vectors are an important concept, and R  is largely built so that operations on vectors are
central to data analysis.

WHAT ABOUT OTHER COLUMNS?

WHAT DID R  RETURN?

A vector of levels
We'll talk about these in more detail shortly, but the key point is that R  DOESN'T THINK
THEY'RE ONLY WORDS - it THINKS THEY'RE NAMED CATEGORIES OF OBJECT. R  is
assuming that you mean to import data
We can operate on this vector, too (EXPLAIN paste() )

>	cats
				coat	weight	likes_string
1	calico				2.1												1
2		black				5.0												0
3		tabby				3.2												1
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>	cats$weight
[1]	2.1	5.0	3.2
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>	cats$weight	+	2
[1]	4.1	7.0	5.2
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>	cats$coat
[1]	calico	black		tabby	
Levels:	black	calico	tabby
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>	paste("My	cat	is",	cats$coat)
[1]	"My	cat	is	calico"	"My	cat	is	black"		"My	cat	is	tabby"	
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WHAT HAPPENS NEXT?

You probably already realised that wasn't going to work, because adding "calico" to "2.1" is nonsense.
THESE DATA TYPES ARE NOT COMPATIBLE for addition
R 's data types reflect the ways in which data is expected to interact

UNDERSTANDING HOW YOUR DATA MAP TO R 's DATA TYPES IS KEY

It's very important to understand how R  sees your data (you want R  to see your data the
same way you do)
Many problems in R  come down to incompatibilities between data and data types.

SLIDE: What Data Types Do You Expect?

ASK THE STUDENTS

What data types would you expect to see?
What data types do you think you would WANT OR NEED, from your own experience?

SPEND A COUPLE OF MINUTES ON THIS

The difference between a data type and a data structure

SLIDE: Data Types in R

R 's data types are atomic: they are FUNDAMENTAL AND EVERYTHING ELSE IS BUILT UP
FROM THEM, like matter is built up from atoms

In particular, all the data structures are built up from data types

There are only FIVE DATA TYPES in R  (though one is split into two…)

logical: Boolean, True/False (also 1 / 0 )
numeric: anything that's a number on the number line; two types of number are supported:
integer  and double  (real)

complex: complex numbers, defined on the 2D plane
character: text data - readable symbols
raw: binary data (we'll not be dealing with this)

LET'S LEARN A BIT MORE ABOUT THEM IN THE DEMO

>	cats$weight	+	cats$coat
[1]	NA	NA	NA
Warning	message:
In	Ops.factor(cats$weight,	cats$coat)	:	‘+’	not	meaningful	for	factors
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ENTER DEFINITIONS INTO THE SCRIPT

Covering the major data types

EXECUTE THE VARIABLE DEFINITIONS

Select the definition lines
Click on Run

OBSERVE THAT THE LINES ARE RUN IN THE CONSOLE
OBSERVE THAT THE VALUES ARE DEFINED IN THE ENVIRONMENT
Note the difference between Data  and Values  in the environment
Note that the script is updated in the Git  tab: commit the change

USE typeof()  TO FIND THE TYPE OF A VARIABLE

TO TEST IF A DATA ITEM HAS A TYPE, USE is.<type>()

#	Some	variables	of	several	data	types
truth	<-	TRUE
lie	<-	FALSE
i	<-	3L
d	<-	3.0
c	<-	3	+	0i
txt	<-	"TRUE"
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>	typeof(i)
[1]	"integer"
>	typeof(c)
[1]	"complex"
>	typeof(d)
[1]	"double"
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>	is.numeric(3)
[1]	TRUE
>	is.numeric(d)
[1]	TRUE
>	is.double(i)
[1]	FALSE
>	is.integer(d)
[1]	FALSE
>	is.numeric(txt)
[1]	FALSE
>	is.character(txt)
[1]	TRUE
>	is.character(truth)
[1]	FALSE
>	is.logical(truth)
[1]	TRUE
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THE INTEGER, COMPLEX, AND DOUBLE ARE EQUAL even if they're not the same data type

numbers are comparable, regardless of data type

INTEGER, COMPLEX AND DOUBLE ARE NOT ALL numeric  though

SLIDE: Challenge 06

Let the students work for a couple of minutes, then demonstrate.

SLIDE: FIVE COMMON R  DATA STRUCTURES

These are perhaps the five data types you'll come across most often in R

We'll deal with them through examples
INTERACTIVE DEMO IN SCRIPT

VECTORS

These are the MOST COMMON DATA STRUCTURE
Vectors can contain ONLY A SINGLE DATA TYPE (atomic vectors)
ADD CODE TO SCRIPT then use Run  to run in console
To create a vector USE THE c()  FUNCTION ( c()  is combine ; use ?c )
First we define an ATOMIC VECTOR OF NUMBERS - each element is an integer

We can use some R  functions to find out more about this variable

>	i	==	c
[1]	TRUE
>	i	==	d
[1]	TRUE
>	d	==	c
[1]	TRUE
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>	is.numeric(i)
[1]	TRUE
>	is.numeric(c)
[1]	FALSE

1
2
3
4

#	Define	an	integer	vector
x	<-	c(10,	12,	45,	33)
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RUN CODE IN CONSOLE

The str()  function REPORTS THE STRUCTURE OF A VARIABLE

Here, num  means 'numeric'; [1:4]  means there are four elements; the elements are listed
NOTE THAT THIS INFORMATION IS IN THE ENVIRONMENT TAB

DEFINE A SECOND VECTOR IN THE SCRIPT

In the Environment tab, you can see THIS IS A CHARACTER VECTOR

IS THE TYPE OF THE VECTOR WHAT YOU EXPECTED?

This is one of the things that trips people up with R  - they think their data is of one type, but R

thinks it makes more sense to have it as another type

SLIDE: Challenge 07

Let the students work for a couple of minutes, then demonstrate.

SLIDE: Coercion

Coercion is what happens when you COVERT ONE DATA TYPE INTO ANOTHER
If R  thinks it needs to, it will COERCE DATA IMPLICITLY without telling you

>	length(x)
[1]	4
>	typeof(x)
[1]	"double"
>	str(x)
	num	[1:4]	10	12	45	33
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#	Define	a	vector
xx	<-	c(1,	2,	'a')
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>	length(xx)
[1]	3
>	typeof(xx)
[1]	"character"
>	str(xx)
	chr	[1:3]	"1"	"2"	"a"
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There is a set order for coercion
logical  can be coerced to integer , but integer  cannot be coerced to logical

That's because integer  can describe all logical  values, but not vice versa
Everything can be represented as a character , so that's the fallback position for R

IF THERE'S A FORMATTING PROBLEM IN YOUR DATA, R  MIGHT CONVERT THE TYPE TO
COPE

R  will choose the simplest data type that can represent all items in the vector

INTERACTIVE DEMO IN CONSOLE More useful things to do with vectors

You can (usually) COERCE VECTORS MANUALLY with as.<type>()

You can generate NUMBER SEQUENCES as vectors

The seq()  function returns a vector
As does the :  operator

You can APPEND ELEMENTS TO A VECTOR WITH c()

>	as.character(x)
[1]	"10"	"12"	"45"	"33"
>	as.complex(x)
[1]	10+0i	12+0i	45+0i	33+0i
>	as.logical(x)
[1]	TRUE	TRUE	TRUE	TRUE
>	xx
[1]	"1"	"2"	"a"
>	as.numeric(xx)
[1]		1		2	NA
Warning	message:
NAs	introduced	by	coercion	
>	as.logical(xx)
[1]	NA	NA	NA
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>	seq(10)
	[1]		1		2		3		4		5		6		7		8		9	10
>	seq(1,	10)
	[1]		1		2		3		4		5		6		7		8		9	10
>	seq(35,	40,	by=0.5)
	[1]	35.0	35.5	36.0	36.5	37.0	37.5	38.0	38.5	39.0	39.5	40.0
>	1:10
	[1]		1		2		3		4		5		6		7		8		9	10
>	5:8
[1]	5	6	7	8	
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There are useful FUNCTIONS TO GET INFORMATION ABOUT A VECTOR

You can GIVE VECTOR ELEMENTS NAMES

They're then referred to as named vectors

SLIDE: Factors

In general DATA COMES AS ONE OF TWO TYPES

Quantitative data represents measurable values. These are usually either CONTINUOUS (real
values like a height in centimetres) or a COUNT (like number of beans in a tin).
Categorical data representing DISCRETE GROUPS, which can be UNORDERED (like "types of
computer"; "educational establishments") or ORDERED (like floors of a building, or grades in
school)

>	x
[1]	10	12	45	33
>	c(x,	57)
[1]	10	12	45	33	57
>	x
[1]	10	12	45	33
>	x	<-	c(x,	57)
>	x
[1]	10	12	45	33	57
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>	x	<-	0:10
>	tail(x)
[1]		5		6		7		8		9	10
>	head(x)
[1]	0	1	2	3	4	5
>	head(x,	n=2)
[1]	0	1
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>	x	<-	1:4
>	names(x)
NULL
>	str(x)
	int	[1:4]	1	2	3	4
>	names(x)	<-	c("a",	"b",	"c",	"d")
>	x
a	b	c	d	
1	2	3	4	
>	str(x)
	Named	int	[1:4]	1	2	3	4
	-	attr(*,	"names")=	chr	[1:4]	"a"	"b"	"c"	"d"
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THIS DISTINCTION IS CRITICAL IN MANY STATISTICAL/ANALYTICAL METHODS

R  WAS MADE FOR STATISTICS so has a special way of dealing with the difference

FACTORS ARE SPECIAL VECTORS REPRESENTING CATEGORICAL DATA

Factors are stored as VECTORS OF LABELLED INTEGERS
Factors CANNOT BE TREATED AS TEXT

CREATE FACTOR IN SCRIPT

We create a FACTOR WITH THREE ELEMENTS
Run  the line

Commit the change

INSPECT THE FACTOR IN THE CONSOLE

When we look at the structure of the vector, it reports TWO LEVELS: "yes"  and "no"

It also reports a list of values: 1 2 1

There is a mapping "no" -> 1  and "yes" -> 2

The VECTOR STORES INTEGERS 1  and 2 , BUT THESE ARE LABELLED "no"  and
"yes"

IN OUR cats  DATA THE COAT WAS STORED AS A FACTOR
DEMO IN CONSOLE

The class()  function IDENTIFIES DATA STRUCTURES
NOTE THAT BY DEFAULT FACTORS ARE NUMBERED IN ALPHABETICAL ORDER OF
LABEL

#	Create	a	factor	with	three	elements
>	f	<-	factor(c("no",	"yes",	"no"))
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>	length(f)
[1]	3
>	str(f)
	Factor	w/	2	levels	"no","yes":	1	2	1
>	levels(f)
[1]	"no"		"yes"
>	f
[1]	no		yes	no	
Levels:	no	yes
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SLIDE: Challenge 08

SLIDE: Matrices

Matrices may be the MOST IMPORTANT DATA STRUCTURE IN NUMERICAL ANALYSIS, central to
pretty much any statistical operation
THEY GET THEIR OWN SPECIAL DATA STRUCTURE IN R

They are 2D vector s (so contain atomic values)

CREATE MATRICES IN SCRIPT

Run  the lines when done
Commit the changes

INSPECT THE RESULTS IN THE CONSOLE

ncol  and nrow  define the size of the matrix
providing a single value as the first argument fills the matrix with that value
The length()  of a matrix IS THE TOTAL NUMBER OF ELEMENTS

>	cats$coat
[1]	calico	black		tabby	
Levels:	black	calico	tabby
>	class(cats$coat)
[1]	"factor"
>	str(cats$coat)
	Factor	w/	3	levels	"black","calico",..:	2	1	3
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>	f	<-	factor(c("case",	"control",	"case",	"control",	"case"))
>	str(f)
	Factor	w/	2	levels	"case","control":	1	2	1	2	1
>	f	<-	factor(c("case",	"control",	"case",	"control",	"case"),	levels=c("control",	"case"))
>	str(f)
	Factor	w/	2	levels	"control","case":	2	1	2	1	2
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#	Create	matrix	of	zeroes
m1	<-	matrix(0,	ncol	=	6,	nrow	=	3)

#	Create	matrix	of	numbers	1	and	2
m2	<-	matrix(c(1,	2),	ncol	=	3,	nrow	=	4)
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PROVIDING TWO VALUES TO THE FIRST ARGUMENT fills the matrix, too

So long as the LENGTH OF THE MATRIX IS A MULTIPLE OF THE INPUT LENGTH
We can INDEX AND SLICE just like before

SLIDE: Challenge 09 (5min)

>	class(m1)
[1]	"matrix"
>	m1
					[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]				0				0				0				0				0				0
[2,]				0				0				0				0				0				0
[3,]				0				0				0				0				0				0
>	str(m1)
	num	[1:3,	1:6]	0	0	0	0	0	0	0	0	0	0	...
	>	length(m1)
[1]	18
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>	m2
					[,1]	[,2]	[,3]	[,4]
[1,]				1				2				1				2
[2,]				2				1				2				1
[3,]				1				2				1				2
>	m2[1,	]
[1]	1	2	1	2
>	m2[2:3,	3:4]
					[,1]	[,2]
[1,]				2				1
[2,]				1				2
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SLIDE: Lists

list s are like vectors, EXCEPT THEY CAN HOLD ANY DATA TYPE

CREATE NEW LIST IN SCRIPT

Run  from script
Commit to repo

INSPECT THE LISTS IN THE CONSOLE

The elements are identified with DOUBLE SQUARE BRACKETS [[n]]

We use this LIKE ANY OTHER INDEX

>	m	<-	matrix(1:50,	nrow	=	5,	ncol	=	10)
>	m
					[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
[1,]				1				6			11			16			21			26			31			36			41				46
[2,]				2				7			12			17			22			27			32			37			42				47
[3,]				3				8			13			18			23			28			33			38			43				48
[4,]				4				9			14			19			24			29			34			39			44				49
[5,]				5			10			15			20			25			30			35			40			45				50
>	?matrix
>	m	<-	matrix(1:50,	nrow	=	5,	ncol	=	10,	byrow	=	TRUE)
>	m
					[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
[1,]				1				2				3				4				5				6				7				8				9				10
[2,]			11			12			13			14			15			16			17			18			19				20
[3,]			21			22			23			24			25			26			27			28			29				30
[4,]			31			32			33			34			35			36			37			38			39				40
[5,]			41			42			43			44			45			46			47			48			49				50
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#	Create	a	list
l	<-	list(1,	'a',	TRUE,	matrix(0,	nrow	=	2,	ncol	=	2),	f)

#	Create	a	named	list
l_named	<-	list(a	=	"SWC",	b	=	1:4)
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THE NAMED LIST IS SLIGHTLY DIFFERENT

CAN STILL INDEX
But can also NOW USE NAMES with $

INDICES CAN CHANGE IF DATA IS MODIFIED - NAMES ARE MORE ROBUST
NAMES CAN ALSO BE MORE DESCRIPTIVE (HELPS UNDERSTANDING)

>	class(l)
[1]	"list"
>	class(l_named)
[1]	"list"
>	str(l)
List	of	5
	$	:	num	1
	$	:	chr	"a"
	$	:	logi	TRUE
	$	:	num	[1:2,	1:2]	0	0	0	0
	$	:	Factor	w/	2	levels	"no","yes":	1	2	1
>	str(l_named)
List	of	2
	$	a:	chr	"SWC"
	$	b:	int	[1:4]	1	2	3	4
>	l
[[1]]
[1]	1

[[2]]
[1]	"a"

[[3]]
[1]	TRUE

[[4]]
					[,1]	[,2]
[1,]				0				0
[2,]				0				0

[[5]]
[1]	no		yes	no	
Levels:	no	yes
>	l[[4]][1,1]
[1]	0
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SLIDE: Logical Indexing

We've seen INDEXING and NAMES as ways to get elements from variables SO LONG AS WE
KNOW WHICH ELEMENTS WE WANT
LOGICAL INDEXING allows us to SPECIFY CONDITIONS FOR THE DATA WE WANT TO
RECOVER

For instance, we might want ALL VALUES OVER A THRESHOLD or ALL NAMES STARTING
WITH 'S'

DEMO IN SCRIPT ( data_structures.R )

We create a vector of values as an example
We make a MASK OF TRUE/FALSE (i.e. logical) values
Run  the lines

DEMO IN CONSOLE
Now, when we USE THE MASK AS AN INDEX we only get THE ELEMENTS WHERE THE MASK IS
TRUE

COMPARATORS IN R  RETURN VECTORS OF TRUE/FALSE VALUES

>	l_named
$a
[1]	"SWC"

$b
[1]	1	2	3	4
>	l_named[[1]]
[1]	"SWC"
>	l_named[[2]]
[1]	1	2	3	4
>	l_named$a
[1]	"SWC"
>	l_named$b
[1]	1	2	3	4
>	names(l_named)
[1]	"a"	"b"
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#	Create	a	vector	for	logical	indexing
v	<-	c(5.4,	6.2,	7.1,	4.8,	7.5)
mask	<-	c(TRUE,	FALSE,	TRUE,	FALSE,	TRUE)
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>	v
[1]	5.4	6.2	7.1	4.8	7.5
>	v[mask]
[1]	5.4	7.1	7.5
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These can be USED AS LOGICAL MASKS fOR DATA
Comparators CAN BE COMBINED

COMMIT CHANGES

SLIDE: 05. Dataframes

Dataframes are probably the most important thing you will ever learn about, in R .
Almost everything in R , on a practical day-to-day basis, involves dataframes

SLIDE: Learning Objectives

After this section YOU WILL UNDERSTAND WHAT A DATAFRAME IS AND HOW IT IS BUILT UP
FROM R  DATA STRUCTURES YOU ALREADY KNOW
You'll also know HOW TO ACCESS ANY PART OF A DATA FRAME, INCLUDING CONDITIONAL
ACCESS
We'll also see how to read data in to, and write it out from, a data frame.

SLIDE: Let's look at a data.frame

The cats  data is a small data.frame

DEMO IN CONSOLE

NOTE: TABULAR
NOTE: 9 elements but length 3?
Try list indexes… IT'S A LIST
Try names() … IT'S A NAMED LIST

>	v
[1]	5.4	6.2	7.1	4.8	7.5
>	v	<	7
[1]		TRUE		TRUE	FALSE		TRUE	FALSE
>	v[v	<	7]
[1]	5.4	6.2	4.8
>	v	<	7
[1]		TRUE		TRUE	FALSE		TRUE	FALSE
>	v	>	5	&	v	<	7
[1]		TRUE		TRUE	FALSE	FALSE	FALSE
>	v[v	>	5	&	v	<	7]
[1]	5.4	6.2
>	v	>	5	|	v	<	7
[1]	TRUE	TRUE	TRUE	TRUE	TRUE
>	v[v	>	5	|	v	<	7]
[1]	5.4	6.2	7.1	4.8	7.5
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What are the classes of each list element? THEY'RE VECTORS

SLIDE: What is a data.frame

This structure is THE MOST IMPORTANT THING IN R

It's the standard structure for storing any king of tabular, 'rectangular' data

We've seen that it's a NAMED LIST where each element is a VECTOR

All the vectors have the same length

This is VERY SIMILAR TO A SPREADSHEET, but it's more finicky:

We require every element in a column to be the same data type
We need all the columns to be the same length
In spreadsheets, neither of these conditions are enforced
This makes R  a bit more data-safe

SLIDE: Creating a data.frame

DEMO IN SCRIPT

>	class(cats)
[1]	"data.frame"
>	cats
				coat	weight	likes_string
1	calico				2.1												1
2		black				5.0												0
3		tabby				3.2												1
>	length(cats)
[1]	3
>	cats[[1]]
[1]	calico	black		tabby	
Levels:	black	calico	tabby
>	typeof(cats)
[1]	"list"
>	names(cats)
[1]	"coat"									"weight"							"likes_string"
>	class(cats$coat)
[1]	"factor"
>	class(cats$weight)
[1]	"numeric"
>	class(cats$likes_string)
[1]	"integer"
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Run  when done
Commit to repo

DEMO IN CONSOLE

!!!!STRINGS ARE INTERPRETED AS FACTORS!!!!
The summary()  function SUMMARISES PROPERTIES OF EACH COLUMN
The summary depends on the column type

SLIDE: Challenge 10

SLIDE: Challenge 11

#	Create	a	data	frame
df	<-	data.frame(a=c(1,2,3),	b=c('eeny',	'meeny',	'miney'),
																	c=c(TRUE,	FALSE,	TRUE))

1
2
3

>	str(df)
'data.frame':			3	obs.	of		3	variables:
	$	a:	num		1	2	3
	$	b:	Factor	w/	3	levels	"eeny","meeny",..:	1	2	3
	$	c:	logi		TRUE	FALSE	TRUE
>	df$c
[1]		TRUE	FALSE		TRUE
>	length(df)
[1]	3
>	dim(df)
[1]	3	3
>	summary(df)
							a											b									c										
	Min.			:1.0			eeny	:1			Mode	:logical		
	1st	Qu.:1.5			meeny:1			FALSE:1								
	Median	:2.0			miney:1			TRUE	:2								
	Mean			:2.0																												
	3rd	Qu.:2.5																												
	Max.			:3.0		
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author_book	<-	data.frame(author_first	=	c('Charles',	'Ernst',	"Theodosius"),
																										author_last	=	c("Darwin",	"Mayr",	"Dobzhansky"),
																										year	=	c(1859,	1942,	1970))
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SLIDE: Challenge 12

SLIDE: Adding rows and columns

To add a row or column, we BIND A VECTOR OR LIST to the dataframe
DEMO IN THE CONSOLE

CHECK THE STRUCTURE FIRST
If you try to BIND A LIST WITH THE WRONG TYPES you'll get an error BUT THE ROW WILL
BE BOUND ANYWAY!

>	country_climate	<-	data.frame(country=c("Canada",	"Panama",	
+																																									"South	Africa",	"Australia"),
+																															climate=c("cold",	"hot",	
+																																									"temperate",	"hot/temperate"),
+																															temperature=c(10,	30,	18,	"15"),
+																															northern_hemisphere=c(TRUE,	TRUE,	
+																																																					FALSE,	"FALSE"),
+																															has_kangaroo=c(FALSE,	FALSE,	
+																																														FALSE,	1))
>	str(country_climate)
'data.frame':			4	obs.	of		5	variables:
	$	country												:	Factor	w/	4	levels	"Australia","Canada",..:	2	3	4	1
	$	climate												:	Factor	w/	4	levels	"cold","hot","hot/temperate",..:	1	2	4	3
	$	temperature								:	Factor	w/	4	levels	"10","15","18",..:	1	4	3	2
	$	northern_hemisphere:	Factor	w/	2	levels	"FALSE","TRUE":	2	2	1	1
	$	has_kangaroo							:	num		0	0	0	1
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>	df	<-	data.frame(a=c(1,2,3),	b=c('eeny',	'meeny',	'miney'),
+																		c=c(TRUE,	FALSE,	TRUE),
+																		stringsAsFactors	=	FALSE)
>	str(df)
'data.frame':			3	obs.	of		3	variables:
	$	a:	num		1	2	3
	$	b:	chr		"eeny"	"meeny"	"miney"
	$	c:	logi		TRUE	FALSE	TRUE
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NOW WE HAVE A GARBAGE ROW!!
We can REMOVE THE ROW IN SEVERAL WAYS

Use the -  syntax
Remove all rows with NA  values

We reassign df  with one of these

>	df
		a					b					c
1	1		eeny		TRUE
2	2	meeny	FALSE
3	3	miney		TRUE
>	df	<-	cbind(df,	vals	=	3:1)
>	df
		a					b					c	vals
1	1		eeny		TRUE				3
2	2	meeny	FALSE				2
3	3	miney		TRUE				1
>	df	<-	rbind(df,	list(4,	'mo',	FALSE,	0))
Warning	message:
In	`[<-.factor`(`*tmp*`,	ri,	value	=	"mo")	:
		invalid	factor	level,	NA	generated
>	levels(df$b)	<-	c('eeny',	'meeny',	'miney',	'mo')
>	df	<-	rbind(df,	list(4,	'mo',	FALSE,	0))
>	>	df
		a					b					c	vals
1	1		eeny		TRUE				3
2	2	meeny	FALSE				2
3	3	miney		TRUE				1
4	4		<NA>	FALSE				0
5	4				mo	FALSE				0
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SLIDE: Writing data.frame  to file

DEMO IN CONSOLE

The write.table()  function WRITES A DATAFRAME TO A FILE
We pass: the dataframe, the filename, the column separator, and whether the header should be
written
\t  means 'tab' - it puts a gap between columns

INSPECT THE FILE

Navigate there in the Files  tab
View the file in RStudio

NOTE: row and column names are written automatically
Using \t  has given spaces as column separators

SLIDE: Reading into a data.frame

DEMO IN SCRIPT
DOWNLOAD DATA

Use the link from the Etherpad document
Place the file in data/

>	df[-4,]
		a					b					c	vals
1	1		eeny		TRUE				3
2	2	meeny	FALSE				2
3	3	miney		TRUE				1
5	4				mo	FALSE				0
>	na.omit(df)
		a					b					c	vals
1	1		eeny		TRUE				3
2	2	meeny	FALSE				2
3	3	miney		TRUE				1
5	4				mo	FALSE				0
>	df	<-	na.omit(df)
>	df
		a					b					c	vals
1	1		eeny		TRUE				3
2	2	meeny	FALSE				2
3	3	miney		TRUE				1
5	4				mo	FALSE				0
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write.table(df,	"data/df_example.tab",	sep="\t")1



CREATE A NEW SCRIPT

Call it gapminder

Add the code
We need to provide a data source (here, a file), the separator character, and whether there's a
header row

ADD AND COMMIT TO REPO
CHECK THE DATA IN THE Environment  TAB

Click on gapminder  in Evironment  tab.
NOTE COLUMNS
DEMO IN CONSOLE

SLIDE: Investigating gapminder

Now we've loaded our data, let's take a look at it
DEMO IN CONSOLE

1704 rows, 6 columns
Investigate types of columns
POINT OUT THAT THE TYPE OF A COLUMN IS INTEGER IF IT'S A FACTOR
LENGTH OF A DATAFRAME IS THE NUMBER OF COLUMNS

#	Load	gapminder	data	from	a	URL
gapminder	<-	read.table("data/gapminder-FiveYearData.csv",	sep=",",	header=TRUE)
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>	str(gapminder)
'data.frame':			1704	obs.	of		6	variables:
	$	country		:	Factor	w/	142	levels	"Afghanistan",..:	1	1	1	1	1	1	1	1	1	1	...
	$	year					:	int		1952	1957	1962	1967	1972	1977	1982	1987	1992	1997	...
	$	pop						:	num		8425333	9240934	10267083	11537966	13079460	...
	$	continent:	Factor	w/	5	levels	"Africa","Americas",..:	3	3	3	3	3	3	3	3	3	3	...
	$	lifeExp		:	num		28.8	30.3	32	34	36.1	...
	$	gdpPercap:	num		779	821	853	836	740	...
>	typeof(gapminder$year)
[1]	"integer"
>	typeof(gapminder$country)
[1]	"integer"
>	str(gapminder$country)
	Factor	w/	142	levels	"Afghanistan",..:	1	1	1	1	1	1	1	1	1	1	...
>	length(gapminder)
[1]	6
>	nrow(gapminder)
[1]	1704
>	ncol(gapminder)
[1]	6
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SLIDE: Subsets of data.frame s

DATAFRAMES ARE LISTS so subset like lists
DATAFRAMES ARE ALSO 2D DATA so subset like matrices
DEMO IN CONSOLE

[1]	6
>	dim(gapminder)
[1]	1704				6
>	colnames(gapminder)
[1]	"country"			"year"						"pop"							"continent"	"lifeExp"			"gdpPercap"
>	head(gapminder)
						country	year						pop	continent	lifeExp	gdpPercap
1	Afghanistan	1952		8425333						Asia		28.801		779.4453
2	Afghanistan	1957		9240934						Asia		30.332		820.8530
3	Afghanistan	1962	10267083						Asia		31.997		853.1007
4	Afghanistan	1967	11537966						Asia		34.020		836.1971
5	Afghanistan	1972	13079460						Asia		36.088		739.9811
6	Afghanistan	1977	14880372						Asia		38.438		786.1134
>	summary(gapminder)
								country										year											pop															continent						lifeExp					
	Afghanistan:		12			Min.			:1952			Min.			:6.001e+04			Africa		:624			Min.			:23.60		
	Albania				:		12			1st	Qu.:1966			1st	Qu.:2.794e+06			Americas:300			1st	Qu.:48.20		
	Algeria				:		12			Median	:1980			Median	:7.024e+06			Asia				:396			Median	:60.71		
	Angola					:		12			Mean			:1980			Mean			:2.960e+07			Europe		:360			Mean			:59.47		
	Argentina		:		12			3rd	Qu.:1993			3rd	Qu.:1.959e+07			Oceania	:	24			3rd	Qu.:70.85		
	Australia		:		12			Max.			:2007			Max.			:1.319e+09																		Max.			:82.60		
	(Other)				:1632																																																																				
			gdpPercap							
	Min.			:			241.2		
	1st	Qu.:		1202.1		
	Median	:		3531.8		
	Mean			:		7215.3		
	3rd	Qu.:		9325.5		
	Max.			:113523.1
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#	Extract	a	single	column,	get	a	dataframe
>	head(gapminder[3])
							pop
1		8425333
2		9240934
3	10267083
4	11537966
5	13079460
6	14880372
>	class(head(gapminder[3]))
[1]	"data.frame"
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SLIDE: Challenge 13

#	Extract	a	single	named	column,	get	a	vector/factor
>	head(gapminder[["lifeExp"]])
[1]	28.801	30.332	31.997	34.020	36.088	38.438
>	class(head(gapminder[["lifeExp"]]))
[1]	"numeric"
>	head(gapminder$year)
[1]	1952	1957	1962	1967	1972	1977
>	class(head(gapminder$year))
[1]	"integer"

#	Slice	rows	like	a	matrix,	get	a	dataframe
>	gapminder[1:3,]
						country	year						pop	continent	lifeExp	gdpPercap
1	Afghanistan	1952		8425333						Asia		28.801		779.4453
2	Afghanistan	1957		9240934						Asia		30.332		820.8530
3	Afghanistan	1962	10267083						Asia		31.997		853.1007
>	class(gapminder[1:3,])
[1]	"data.frame"
>	gapminder[3,]
						country	year						pop	continent	lifeExp	gdpPercap
3	Afghanistan	1962	10267083						Asia		31.997		853.1007
>	class(gapminder[3,	])
[1]	"data.frame"

#	Slice	columns	like	a	matrix,	get	vector/factor
>	head(gapminder[,	3])
[1]		8425333		9240934	10267083	11537966	13079460	14880372
>	class(head(gapminder[,	3]))
[1]	"numeric"

#	Slice	columns	like	a	matrix	get	dataframe
>	head(gapminder[,	3,	drop=FALSE])
							pop
1		8425333
2		9240934
3	10267083
4	11537966
5	13079460
6	14880372
>	class(head(gapminder[,	3,	drop=FALSE]))
[1]	"data.frame"
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#	Extract	observations	collected	for	the	year	1957
>	head(gapminder[gapminder$year	==	1957,])
							country	year						pop	continent	lifeExp	gdpPercap
2		Afghanistan	1957		9240934						Asia		30.332			820.853
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2		Afghanistan	1957		9240934						Asia		30.332			820.853
14					Albania	1957		1476505				Europe		59.280		1942.284
26					Algeria	1957	10270856				Africa		45.685		3013.976
38						Angola	1957		4561361				Africa		31.999		3827.940
50			Argentina	1957	19610538		Americas		64.399		6856.856
62			Australia	1957		9712569			Oceania		70.330	10949.650

#	Extract	all	columns	except	1	through	4
>	head(gapminder[,	-(1:4)])
		lifeExp	gdpPercap
1		28.801		779.4453
2		30.332		820.8530
3		31.997		853.1007
4		34.020		836.1971
5		36.088		739.9811
6		38.438		786.1134
>	head(gapminder[,	-1:-4])
		lifeExp	gdpPercap
1		28.801		779.4453
2		30.332		820.8530
3		31.997		853.1007
4		34.020		836.1971
5		36.088		739.9811
6		38.438		786.1134

#	Extract	all	rows	where	life	expectancy	is	greater	than	80	years
>	head(gapminder[gapminder$lifeExp	>	80,])
												country	year						pop	continent	lifeExp	gdpPercap
71								Australia	2002	19546792			Oceania		80.370		30687.75
72								Australia	2007	20434176			Oceania		81.235		34435.37
252										Canada	2007	33390141		Americas		80.653		36319.24
540										France	2007	61083916				Europe		80.657		30470.02
671	Hong	Kong	China	2002		6762476						Asia		81.495		30209.02
672	Hong	Kong	China	2007		6980412						Asia		82.208		39724.98

#	ADVANCED:	Extract	rows	for	years	2002	and	2007
>	head(gapminder[gapminder$year	==	2002	|	gapminder$year	==	2007,])
							country	year						pop	continent	lifeExp	gdpPercap
11	Afghanistan	2002	25268405						Asia		42.129		726.7341
12	Afghanistan	2007	31889923						Asia		43.828		974.5803
23					Albania	2002		3508512				Europe		75.651	4604.2117
24					Albania	2007		3600523				Europe		76.423	5937.0295
35					Algeria	2002	31287142				Africa		70.994	5288.0404
36					Algeria	2007	33333216				Africa		72.301	6223.3675
>	head(gapminder[gapminder$year	%in%	c(2002,	2007),])
							country	year						pop	continent	lifeExp	gdpPercap
11	Afghanistan	2002	25268405						Asia		42.129		726.7341
12	Afghanistan	2007	31889923						Asia		43.828		974.5803
23					Albania	2002		3508512				Europe		75.651	4604.2117
24					Albania	2007		3600523				Europe		76.423	5937.0295
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SLIDE: 06. Packages

SLIDE: Learning Objectives

In this short section, we'll learn
what packages are
how to install them
how to use them in your code

SLIDE: Packages

Packages are THE FUNDAMENTAL UNIT OF REUSABLE CODE IN R

People write code, and DISTRIBUTE IT IN PACKAGES
Packages exist for many SPECIALIST AND USEFUL TOOLS
Over 10,000 packages can be found at CRAN - the Comprehensive R Archive Network
When you write your own code, you can distribute it as a package

DEMO IN CONSOLE

You can SEE INSTALLED PACKAGES with the function installed.packages()

To install a new package, use install.packages("packagename")  as a string EXPLAIN
DEPENDENCIES
DEMO INSTALLATION IN RStudio : Tools  $\rightarrow$ Install packages...

DEMO PACKAGE UPDATES IN RStudio

You can update your installed packages to the newest version in the console with
update.packages()  DON'T DO THIS - CAN TAKE TIME!

24					Albania	2007		3600523				Europe		76.423	5937.0295
35					Algeria	2002	31287142				Africa		70.994	5288.0404
36					Algeria	2007	33333216				Africa		72.301	6223.3675

#	The	%in%	operator
>	1	%in%	c(1,	2,	3,	4,	5)
[1]	TRUE
>	6	%in%	c(1,	2,	3,	4,	5)
[1]	FALSE
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SLIDE: Challenge 14

SLIDE: Visualisation is Critical

Visualisation HELPS US UNDERSTAND OUR DATA
But IT'S NOT FOOLPROOF - people can interpret the same visualisation differently
Good visualisation is MORE THAN JUST USING A PLOTTING TOOL

SLIDE: Learning Objectives

After this section, you should understand the Grammar of Graphics

You'll be able to produce INFORMATIVE, BEAUTIFUL GRAPHS THAT EXPLAIN YOUR DATA

You'll also be able to use ggplot2  to generate those plots

SLIDE: The Grammar of Graphics

We'll be using the ggplot2  package, which is part of the TIDYVERSE, created initially by Hadley
Wickham.

>	installed.packages()
																		Package												
BiocInstaller					"BiocInstaller"				
bit															"bit"														
bit64													"bit64"												
data.table								"data.table"		
[...]
>	install.packages("dplyr")
Installing	package	into	‘/Users/lpritc/Library/R/3.4/library’
(as	‘lib’	is	unspecified)
also	installing	the	dependencies	‘bindrcpp’,	‘glue’,	‘rlang’
[...]
>	update.packages(ask=FALSE)
>	library(dplyr)
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The Tidyverse provides OTHER USEFUL PACKAGES but you can use ggplot2  on its own

ggplot2  implements A SET OF CONCEPTS CALLED THE GRAMMAR OF GRAPHICS

This SEPARATES DATA FROM THE WAY IT'S REPRESENTED and we'll discuss it in detail
It's not the usual way you might have seen to create plots, but it's highly effective for generating
powerful visualisations

SLIDE: A Basic Scatterplot

You can use ggplot2  in the SAME WAY YOU'D USE BASE GRAPHICS

This is not the best way to use all the power of the package

DEMO IN CONSOLE

IMPORT LIBRARY
ggplot2  has qplot()  - the equivalent to plot()  in base graphics
plot()  takes x  and y  values, and will assign colours to factor  columns
qplot()  takes the name of x  and y  columns, plus the name of the source
data.frame , and will assign colours to factor  columns

COMPARE THE GRAPHS

Clearly, both graphs show the same data
The FORMATTING IS QUITE DIFFERENT
Your preference is your preference - both methods can be heavily restyled
My view is that ggplot2  has nicer default styles
ggplot2  provides gridlines and legends by default, and the labelling is clearer (no
gapminder$  prefix)

THIS ISN'T WHAT'S POWERFUL ABOUT ggplot2 !

**SLIDE: What is a Plot? aesthetics **

TALK THROUGH THE POINTS
Each observation in the data is a point
The aesthetics of a point determine how it is rendered in the plot

co-ordinates (x, y values) ON THE IMAGE
size

>	library(ggplot2)
>	plot(gapminder$lifeExp,	gapminder$gdpPercap,	col=gapminder$continent)
>	qplot(lifeExp,	gdpPercap,	data=gapminder,	colour=continent)
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shape
colour
transparency

aesthetics can be

constant (e.g. all points the same colour)
mapped to variables (e.g. colour mapped to continent)

**SLIDE: What is a Plot? aesthetics **

The aesthetics of a plot define a new dataset for each point
THIS SHOULD REMIND YOU STRONGLY OF A data.frame

SLIDE: What is a Plot? geom s

So far we've only defined the data and aesthetics

THIS ONLY TELLS US HOW DATA POINTS ARE REPRESENTED, NOT THE TYPE OF PLOT

geom s (short for geometries) DEFINE THE KIND OF PLOT WE PRODUCE

Showing the data as points is a scatterplot
Showing the data as lines is a line plot
Showing the data as bars is a barchart

We can use **different geom s with the same data and aesthetics **

SLIDE: What is a Plot? geom s

DEMO IN SCRIPT ( gapminder.R )

We create a plot with the ggplot()  function.
We define the data as data , and aesthetics with aes

WE PUT THE RESULT IN A VARIABLE FOR CONVENIENCE
Data and aesthetics aren't enough to define a plot. WE NEED A geom

Use geom_point()

WE'VE RECREATED THE SCATTERPLOT WE SAW EARLIER
COMMIT CHANGES TO SCRIPT

#	Generate	plot	of	GDP	per	capita	against	life	Expectancy
p	<-	ggplot(data=gapminder,	aes(x=lifeExp,	y=gdpPercap,	color=continent))
p	+	geom_point()
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What happens if we change the geom ?

DEMO IN THE SCRIPT

This looks terrible. CHANGE IT BACK

SLIDE: Challenge 15

**SLIDE: What is a Plot? layers **

Without knowing it, WE'VE JUST BEEN USING THE LAYERS CONCEPT

all ggplot2  plots are built as layers

ALL LAYERS HAVE TWO COMPONENTS

data to be shown, and aesthetics for showing them
a geom  defining the type of plot

**The ggplot  object describes a base layer, and can contain data and aesthetics **

THESE ARE INHERITED BY THE OTHER LAYERS IN THE PLOT
The values can also be overridden in specified layers

**SLIDE: What is a Plot? layers **

In our first plot we defined a base with:

data from gapminder

aesthetics with x and y coordinates, and colouring by continent

We defined a layer that:
had a geom_point  geom

inherited data and aesthetics from the base

p	+	geom_line()1

#	Plot	life	expectancy	against	time
p	<-	ggplot(data=gapminder,	aes(x=year,	y=lifeExp,	colour=continent))
p	+	geom_point()
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LAYERS ARE ADDED WITH THE +  OPERATOR

**SLIDE: What is a Plot? layers **

Now we will **override the base layer aesthetics **
DEMO IN SCRIPT

We'll change the geom  to geom_line

We'll extend the aesthetics to group datapoints by country

RENDER THE PLOT

**SLIDE: What is a Plot? layers **

We can BUILD UP LAYERS OF geom S to produce a more complex plot
We ADD A NEW geom_point()  LAYER WITH +

We use the layer's alpha  argument to control transparency

DEMO IN SCRIPT

RENDER THE PLOT
COMMIT THE CHANGES

SLIDE: Challenge 16

SLIDE: Transformations and scale s

#	Generate	plot	of	GDP	per	capita	against	life	expectancy
p	<-	ggplot(data=gapminder,	aes(x=lifeExp,	y=gdpPercap,	color=continent))
p	+	geom_line(aes(group=country))
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#	Generate	plot	of	GDP	per	capita	against	life	expectancy
p	<-	ggplot(data=gapminder,	aes(x=lifeExp,	y=gdpPercap,	color=continent))
p	+	geom_line(aes(group=country))	+	geom_point(alpha=0.4)
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#	Generate	plot	of	life	expectancy	against	time
p	<-	ggplot(data=gapminder,	aes(x=year,	y=lifeExp,	color=continent))
p	+	geom_line(aes(group=country))	+	geom_point(alpha=0.35)

1
2
3



Another kind of layer is a transformation - handled with scale  layers
These map data to new aesthetics on the plot

new axis scales, e.g. log scale, reverse scale, time scale
colour scaling (changing palettes)
shape and size scaling

DEMO IN SCRIPT ( gapminder.R )

Rescale the plot first
Then change the colours

SLIDE: Statistics layers

Some geom  layers transform the dataset

Usually this is a data summary (e.g. smoothing or binning)
The layer may provide a new summary visual object

DEMO IN SCRIPT

This is working towards an informative figure
Start with a new basic scatterplot
NOTE: setting opacity helps see density in the data - looks like two main points of density
NOTE: looks like a general trend of GDP and life expectancy correlating

ADD A SMOOTHED FIT

NOTE: The correlation is made quite clear

ADD A CONTOUR PLOT OF DENSITY

NOTE: Two populations are clear

#	Generate	plot	of	GDP	per	capita	against	life	expectancy
p	<-	ggplot(data=gapminder,	aes(x=lifeExp,	y=gdpPercap,	color=continent))
p	<-	p	+	geom_line(aes(group=country))	+	geom_point(alpha=0.4)
p	+	scale_y_log10()	+	scale_color_grey()
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#	Generate	summary	plot	of	GDP	per	capita	against	life	expectancy
p	<-	ggplot(data=gapminder,	aes(x=lifeExp,	y=gdpPercap))
p	+	geom_point(alpha=0.4)	+	scale_y_log10()
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#	Generate	summary	plot	of	GDP	per	capita	against	life	expectancy
p	<-	ggplot(data=gapminder,	aes(x=lifeExp,	y=gdpPercap))
p	<-	p	+	geom_point(alpha=0.4)	+	scale_y_log10()
p	+	geom_smooth()
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We might speculate that there is a difference in wealth/life expectancy across continents

ADD CONTINENT COLOURING

NOTE: It's now clear that the two populations are centred on Europe (wealthy, long-lived) and
Africa (poor, short-lived), respectively.

COMMIT CHANGES

SLIDE: Multi-panel figures

All our plots so far have been single figures, but multi-panel plots can give clearer comparisons
The facet_wrap()  layer allows us to make grids of plots, SPLIT BY A FACTOR
DEMO IN THE SCRIPT

We set a default aesthetic grouping by country
We generate a line plot, with log y axis
The result is a bit messy.

using facet_wrap()  to split by continent is clearer

NOTE: the axes are consistent across facets

SLIDE: Challenge 17 (10min)

#	Generate	summary	plot	of	GDP	per	capita	against	life	expectancy
p	<-	ggplot(data=gapminder,	aes(x=lifeExp,	y=gdpPercap))
p	<-	p	+	geom_point(alpha=0.4)	+	scale_y_log10()
p	+	geom_density_2d(color="purple")
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p	<-	ggplot(data=gapminder,	aes(x=lifeExp,	y=gdpPercap))
p	<-	p	+	geom_point(alpha=0.4,	aes(color=continent))	+	scale_y_log10()
p	+	geom_density_2d(color="purple")
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#	Compare	life	expectancy	over	time	by	country
p	<-	ggplot(data=gapminder,	aes(x=year,	y=lifeExp,	colour=continent,	group=country))
p	+	geom_line()	+	scale_y_log10()
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p	<-	ggplot(data=gapminder,	aes(x=year,	y=lifeExp,	colour=continent,	group=country))
p	<-	p	+	geom_line()	+	scale_y_log10()
p	+	facet_wrap(~continent)
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SLIDE: Learning Objectives

You're going to learn to manipulate data.frame s with the six verbs of dplyr

select()

filter()

group_by()

summarize()

mutate()

%>%  (pipe)

SLIDE: What and Why is dplyr ?

dplyr  is a package in the TIDYVERSE; it exists to enable rapid analysis of data by groups

For example, if we wanted numerical (rather than graphical) analysis of the gapminder  data
by continent, we'd use dplyr

So far, we know how to subset, but repetitive application is tedious

WE MIGHT MANAGE TO REPEAT BY CONTINENT, LIKE HERE - BUT BY COUNTRY?

AVOIDING REPETITION IMPROVES YOUR CODE

More robust
More readable

#	Contrast	GDP	per	capita	against	population
p	<-	ggplot(data=gapminder,	aes(x=pop,	y=gdpPercap))
p	<-	p	+	geom_point(alpha=0.8,	aes(color=continent))
p	<-	p	+	scale_y_log10()	+	scale_x_log10()
p	+	geom_density_2d(alpha=0.5)	+	facet_wrap(~year)
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More reproducible

SLIDE: Split-Apply-Combine

The general principle dplyr  supports is SPLIT-APPLY-COMBINE

We have a dataset with several groups (column x )

We want to perform the same operation on each group, independently - take a mean of y  for
each group, for example

So we SPLIT the data into groups, on x

Then we APPLY the operation (take the mean for each group)
Then we COMBINE the results into a new table

SLIDE: select()  - Interactive Demo

DEMO IN CONSOLE

Import dplyr

The select()  verb SELECTS COLUMNS

DEMO IN CONSOLE
If we wanted to select only year, country and GDP data from gapminder

Specify: data, then columns

Here, we applied a function, but we can also 'PIPE' DATA FROM ONE VERB TO ANOTHER

These work like pipes in the shell
SPECIAL PIPE SYMBOL: %>%

Specify only columns

>	library(dplyr)1

>	head(select(gapminder,	year,	country,	gdpPercap))
		year					country	gdpPercap
1	1952	Afghanistan		779.4453
2	1957	Afghanistan		820.8530
3	1962	Afghanistan		853.1007
4	1967	Afghanistan		836.1971
5	1972	Afghanistan		739.9811
6	1977	Afghanistan		786.1134
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SLIDE: filter()

filter()  selects rows on the basis of some condition, or combination of conditions

We can **use it as a function, with pipes **

DEMO IN CONSOLE

DEMO IN SCRIPT ( gapminder.R )

One advantage of pipes is that they make chaining verbs together MORE READABLE
END THE LINES WITH THE PIPE SYMBOL so R  knows that there's a continuation
Run  the lines and check the output in Environment

Commit  the changes

**SLIDE: Challenge 18

>	head(gapminder	%>%	select(year,	country,	gdpPercap))
		year					country	gdpPercap
1	1952	Afghanistan		779.4453
2	1957	Afghanistan		820.8530
3	1962	Afghanistan		853.1007
4	1967	Afghanistan		836.1971
5	1972	Afghanistan		739.9811
6	1977	Afghanistan		786.1134

1
2
3
4
5
6
7
8

>	head(filter(gapminder,	continent=="Europe"))
		country	year					pop	continent	lifeExp	gdpPercap
1	Albania	1952	1282697				Europe			55.23		1601.056
2	Albania	1957	1476505				Europe			59.28		1942.284
3	Albania	1962	1728137				Europe			64.82		2312.889
4	Albania	1967	1984060				Europe			66.22		2760.197
5	Albania	1972	2263554				Europe			67.69		3313.422
6	Albania	1977	2509048				Europe			68.93		3533.004
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#	Select	gdpPercap	by	country	and	year,	only	for	Europe
eurodata	<-	gapminder	%>%
														filter(continent	==	"Europe")	%>%
														select(year,	country,	gdpPercap)
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#	Select	life	expectancy	by	country	and	year,	only	for	Africa
afrodata	<-	gapminder	%>%
		filter(continent	==	"Africa")	%>%
		select(year,	country,	lifeExp)
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SLIDE: group_by()

The group_by()  verb SPLITS data.frame s INTO GROUPS ON A COLUMN PROPERTY
DEMO IN CONSOLE

It returns a tibble  - a table with extra metadata describing the groups in the table

**SLIDE: summarize()

The combination of group_by()  and summarize()  is very powerful

We can CREATE NEW VARIABLES using functions that repeat for each group

Here, we've split the original table into three groups, and now CREATE A NEW VARIABLE mean_b

THAT IS FILLED BY CALCULATING THE MEAN OF b

DEMO IN SCRIPT

We use the same principle to calculate mean GDP per continent

>	group_by(gapminder,	continent)
#	A	tibble:	1,704	x	6
#	Groups:			continent	[5]
							country		year						pop	continent	lifeExp	gdpPercap
								<fctr>	<int>				<dbl>				<fctr>			<dbl>					<dbl>
	1	Afghanistan		1952		8425333						Asia		28.801		779.4453
	2	Afghanistan		1957		9240934						Asia		30.332		820.8530
	3	Afghanistan		1962	10267083						Asia		31.997		853.1007
	4	Afghanistan		1967	11537966						Asia		34.020		836.1971
	5	Afghanistan		1972	13079460						Asia		36.088		739.9811
	6	Afghanistan		1977	14880372						Asia		38.438		786.1134
	7	Afghanistan		1982	12881816						Asia		39.854		978.0114
	8	Afghanistan		1987	13867957						Asia		40.822		852.3959
	9	Afghanistan		1992	16317921						Asia		41.674		649.3414
10	Afghanistan		1997	22227415						Asia		41.763		635.3414
#	...	with	1,694	more	rows
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SLIDE: challenge 19

IN THE SCRIPT

IN THE CONSOLE

SLIDE: count()  and n()

Two other useful functions are related to summarize()

count()  reports a new table of counts by group
n()  is used to represent the count of rows, when calculating new values in

>	#	Produce	table	of	mean	GDP	by	continent
>	gapminder	%>%
+					group_by(continent)	%>%
+					summarize(meangdpPercap=mean(gdpPercap))
#	A	tibble:	5	x	2
		continent	meangdpPercap
					<fctr>									<dbl>
1				Africa						2193.755
2		Americas						7136.110
3						Asia						7902.150
4				Europe					14469.476
5			Oceania					18621.609
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#	Find	average	life	expectancy	by	nation
avg_lifexp_country	<-	gapminder	%>%
		group_by(country)	%>%
		summarize(meanlifeExp=mean(lifeExp))

1
2
3
4

>	avg_lifexp_country[avg_lifexp_country$meanlifeExp	==	max(avg_lifexp_country$meanlifeExp),]
#	A	tibble:	1	x	2
		country	meanlifeExp
			<fctr>							<dbl>
1	Iceland				76.51142
>	avg_lifexp_country[avg_lifexp_country$meanlifeExp	==	min(avg_lifexp_country$meanlifeExp),]
#	A	tibble:	1	x	2
							country	meanlifeExp
								<fctr>							<dbl>
1	Sierra	Leone				36.76917	
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summarize()

DEMO IN CONSOLE * NOTE: standard error is (std dev)/sqrt(n)

SLIDE: mutate()

mutate()  CALCULATES NEW VARIABLES (COLUMNS) ON THE BASIS OF EXISTING
COLUMNS
DEMO IN SCRIPT

Say we want to calculate the total GDP of each nation, each year, in $bn
We'd multiply the GDP per capita by the total population, and divide by 1bn

INSPECT THE OUTPUT

We have a new data table, which is the gapminder  data, plus an extra column

WE CAN CHAIN ALL THESE OPERATIONS TOGETHER WITH PIPES
We can calculate several summaries in a single summarize()  command
We can use the output of mutate()  in the summarize()  command
DEMO IN SCRIPT

We're going to calculate the total (and standard deviation) of GDP per continent, per year

>	gapminder	%>%	filter(year	==	2002)	%>%	count(continent,	sort	=	TRUE)
#	A	tibble:	5	x	2
		continent					n
					<fctr>	<int>
1				Africa				52
2						Asia				33
3				Europe				30
4		Americas				25
5			Oceania					2
>	gapminder	%>%	group_by(continent)	%>%	summarize(se_lifeExp	=	sd(lifeExp)/sqrt(n()))
#	A	tibble:	5	x	2
		continent	se_lifeExp
					<fctr>						<dbl>
1				Africa		0.3663016
2		Americas		0.5395389
3						Asia		0.5962151
4				Europe		0.2863536
5			Oceania		0.7747759
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#	Calculate	GDP	in	$billion
gdp_bill	<-	gapminder	%>%
		mutate(gdp_billion	=	gdpPercap	*	pop	/	10^9)
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Calculate total GDP first
Group by continent and year
Summarise mean and sd of GDP per capita, and total GDP
INSPECT THE OUTPUT
Commit  the changes

SLIDE: Learning Objectives

In this short section, you'll learn how to perform actions depending on values of data in R

You'll also learn how to repeat operations, using for()  loops
These are very important general concepts, that recur in many programming languages
Much of the time, you can avoid using them in R  data analyses, because dplyr  exists, and
because R  is vectorised

SLIDE: if()  … else

We often want to run a piece of code, or take an action, dependent on whether some data has a
particular value (is true or false, say
When this is the case, we can use the general if()  … else  structure, which is common to most
programming languages

DEMO IN SCRIPT

CREATE NEW SCRIPT ( flow_control.R )

Let's say that we want to print a message if some value is greater than 10
NOTE AUTOCOMPLETION/BRACKETS ETC.
THE CODE TO BE RUN GOES IN CURLY BRACES
Source  the file

NOTHING HAPPENS ( x > 10  is FALSE )
The if()  block executes if the value in the parentheses evaluates to TRUE

#	Calculate	total/sd	of	GDP	by	continent	and	year
gdp_bycontinents_byyear	<-	gapminder	%>%
		mutate(gdp_billion=gdpPercap*pop/10^9)	%>%
		group_by(continent,year)	%>%
		summarize(mean_gdpPercap=mean(gdpPercap),
												sd_gdpPercap=sd(gdpPercap),
												mean_gdp_billion=mean(gdp_billion),
												sd_gdp_billion=sd(gdp_billion))
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09. Program Flow Control



MODIFY THE SCRIPT

Add the else  block
Source  the code: we get a message

BUT IS THE MESSAGE TRUE?

SET x <- 10  AND TRY AGAIN
MODIFY THE SCRIPT WITH else if()  STATEMENT

Source  the script: NO OUTPUT

MODIFY THE SCRIPT WITH A FINAL else  STATEMENT

Source  the script: EQUALS output

#	A	data	point
x	<-	8

#	Example	if	statement
if	(x	>	10)	{
		print("x	is	greater	than	10")
}
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#	Example	if	statement
if	(x	>	10)	{
		print("x	is	greater	than	10")
}	else	{
		print("x	is	less	than	10")
}
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#	A	data	point
x	<-	10

#	Example	if	statement
if	(x	>	10)	{
		print("x	is	greater	than	10")
}	else	if	(x	<	10)	{
		print("x	is	less	than	10")
}
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SLIDE: Challenge 20

SLIDE: for()  loops

If you want to iterate over a set of values, then for()  loops can be used
for()  loops are a very common programming construct

They express the idea: FOR EACH ITEM IN A GROUP, DO SOMETHING (WITH THAT ITEM)

DEMO IN SCRIPT ( flow_control.R )

Say we have a vector c(1,2,3) , and we want to print each item
We can loop over all the items and print them

The loop structure is

for() , where the argument names a variable ( i ) - the iterator, and a set of values:
for(i in c('a', 'b', 'c'))

A CODE BLOCK defined by curly braces (**note automated completion)
The contents of the code block are executed for each value of the iterator

#	A	data	point
x	<-	9

#	Example	if	statement
if	(x	>	10)	{
		print("x	is	greater	than	10")
}	else	if	(x	<	10)	{
		print("x	is	less	than	10")
}	else	{
		print("x	is	equal	to	10")
}
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#	Are	there	any	records	for	a	year
year	<-	2002
if(any(gapminder$year	==	year)){
			print("Record(s)	for	this	year	found.")
}
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Loops can (but shouldn't always) be nested
DEMO IN SCRIPT

The outer loop is executed and, for each value in the outer loop, the inner loop is executed to
completion

The simplest way to capture output is to add a new item to a vector each iteration of the loop
DEMO IN SCRIPT

REMIND: using c()  to append to a vector

GROWING OUTPUT FROM LOOPS IS COMPUTATIONALLY VERY EXPENSIVE

Better to define the empty output container first (if you know the dimensions)

MODIFY IN SCRIPT

#	Basic	for	loop
for(i	in	c('a',	'b',	'c')){
		print(i)
}
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#	Nested	loop	example
for	(i	in	1:5)	{
		for	(j	in	c('a',	'b',	'c'))	{
				print(paste(i,	j))
		}
}
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#	Capture	loop	output
output	<-	c()
for	(i	in	1:5)	{
		for	(j	in	c('a',	'b',	'c',	'd',	'e'))	{
				output	<-	c(output,	paste(i,	j))
		}
}
(output)
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#	Capture	loop	output
output_matrix	<-	matrix(nrow=5,	ncol=5)
j_letters	<-	c('a',	'b',	'c',	'd',	'e')
for	(i	in	1:5)	{
		for	(j	in	1:5)	{
				output_matrix[i,	j]	<-paste(i,	j_letters[j])
		}
}
(output_matrix)
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SLIDE: while()  loops

Sometimes you need to perform some action WHILE A CONDITION IS TRUE

This isn't as common as a for()  loop
It's a general programming construct

DEMO IN SCRIPT

We'll generate random numbers until one falls below a threshold
runif()  generates random numbers from a uniform distribution

We print random numbers until one is less than 0.1

run a couple of times to show the output is random

COMMIT THE SCRIPT

SLIDE: Challenge 21

SLIDE: Vectorisation

Although for()  and while()  loops can be useful, they are rarely the most efficient way to
work in R

MOST FUNCTIONS IN R  ARE VECTORISED

#	Example	while	loop
z	<-	1
while(z	>	0.1){
		z	<-	runif(1)
		print(z)
}
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#	Challenge	solution
for	(l	in	letters)	{
		if	(l	%in%	c('a',	'e',	'i',	'o',	'u'))	{
				value	<-	TRUE
		}	else	{
				value	<-	FALSE
		}
		print(paste(l,	value))
}
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When applied to a vector, they work on all elements in the vector
So no need to use a loop.

DEMO IN CONSOLE

Operators are vectorised

You can operate on vectors together

Comparison operators are vectorised

Functions working on vectors

MATRICES

The *  multiplication operator is a vectorised/elementwise multiplication
To perform the matrix multiplication you might expect, use the %*%  operator

>	x	<-	1:4
>	x
[1]	1	2	3	4
>	x	*	2
[1]	2	4	6	8

1
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>	y	<-	6:9
>	y
[1]	6	7	8	9
>	x	+	y
[1]		7		9	11	13
>	x	*	y
[1]		6	14	24	36
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>	x	>	2
[1]	FALSE	FALSE		TRUE		TRUE
>	y	<	7
[1]		TRUE	FALSE	FALSE	FALSE
>	any(y	<	7)
[1]	TRUE
>	all(y	<	7)
[1]	FALSE
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>	log(x)
[1]	0.0000000	0.6931472	1.0986123	1.3862944
>	x^2
[1]		1		4		9	16
>	sin(x)
[1]		0.8414710		0.9092974		0.1411200	-0.7568025
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SLIDE: Challenge 21

SLIDE: Learning objectives

YOU'VE ALREADY BEEN USING FUNCTIONS (e.g. log() ) and, I hope, have found them useful

Functions let us run a complex series of commands in one go

You wouldn't want to have to repeat the calculations for log()  each time
They keep the operation under a memorable or descriptive name, which makes the code
readable and understandable, and they are invoked with that name
There are a defined set of inputs and outputs for a function, so WE KNOW WHAT
BEHAVIOUR TO EXPECT

SLIDE: Why Functions?

Functions let us run a complex series of logically- or functionally-RELATED commands in one go

>	m	<-	matrix(1:4,	nrow	=	2,	ncol	=	2)
>	m
					[,1]	[,2]
[1,]				1				3
[2,]				2				4
>	m	*	m
					[,1]	[,2]
[1,]				1				9
[2,]				4			16
>	m	%*%	m
					[,1]	[,2]
[1,]				7			15
[2,]			10			22
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>	v	=	1:10000
>	v	<-	1/(v^2)
>	sum(v)
[1]	1.644834
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10. Functions



It helps when functions have descriptive and memorable names, as this makes code READABLE
AND UNDERSTANDABLE

We invoke functions with their name

We expect functions to have A DEFINED SET OF INPUTS AND OUTPUTS - aids clarity and
understanding

FUNCTIONS ARE THE BUILDING BLOCKS OF PROGRAMMING

As a rule of thumb it is good to write small functions with one obvious, clearly-defined task.

As you will see we can chain smaller functions together to manage complexity

SLIDE: Defining a Function

Functions have a STANDARD FORM

We declare a <function_name>

We use the function  function/keyword to assign the function to <function_name>

Inputs (arguments) to a function are defined in parentheses: These are defined as variables for
use within the function AND DO NOT EXIST OUTSIDE THE FUNCTION
The code block (curly braces) encloses the function code, the function body.
NOTE THE INDENTATION - Easier to read, but does not affect execution
The code <does_something>

The return()  function returns the value, when the function is called

DEMO IN SCRIPT

Create new script functions.R

Write and Source

DEMO IN CONSOLE

#	Example	function
my_sum	<-	function(a,	b)	{
		the_sum	<-	a	+	b
		return(the_sum)
}
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>	my_sum(3,	7)
[1]	10
>	a
Error:	object	'a'	not	found
>	b
Error:	object	'b'	not	found
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DEMO IN SCRIPT

Let's define another function: convert temperature from fahrenheit to Kelvin

DEMO IN SCRIPT

LET'S MAKE ANOTHER FUNCTION CONVERTING KELVIN TO CELSIUS
DEMO IN SCRIPT

Source  the script

DEMO IN CONSOLE

WE COULD DEFINE A NEW FUNCTION TO CONVERT FAHRENHEIT TO CELSIUS

But it's easier to combine the two functions we've already written

DEMO IN CONSOLE

#	Fahrenheit	to	Kelvin
fahr_to_kelvin	<-	function(temp)	{
		kelvin	<-	((temp	-	32)	*	(5	/	9))	+	273.15
		return(kelvin)
}

1
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>	fahr_to_kelvin(32)
[1]	273.15
>	fahr_to_kelvin(-40)
[1]	233.15
>	fahr_to_kelvin(212)
[1]	373.15
>	temp
Error:	object	'temp'	not	found
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#	Kelvin	to	Celsius
kelvin_to_celsius	<-	function(temp)	{
		celsius	<-	temp	-	273.15
		return(celsius)
}

1
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>	kelvin_to_celsius(273.15)
[1]	0
>	kelvin_to_celsius(233.15)
[1]	-40
>	kelvin_to_celsius(373.15)
[1]	100
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DEMO IN SCRIPT

DEMO IN CONSOLE

NOTE: AUTOMATICALLY TAKES ADVANTAGE OF R 's VECTORISATION

SLIDE: Documentation

It's important to have well-named functions (this is itself a form of documentation)
But it's not a detailed explanation

You've found R 's help useful, but it doesn't exist for your functions until you write it

YOUR FUTURE SELF WILL THANK YOU FOR DOING IT!

SOME GOOD PRINCIPLES TO FOLLOW WHEN WRITING DOCUMENTATION ARE:

Say what the code does (and why) - *more important than how *
Define your inputs and outputs
Provide an example

DEMO IN CONSOLE

>	fahr_to_kelvin(212)
[1]	373.15
>	kelvin_to_celsius(fahr_to_kelvin(212))
[1]	100
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#	Fahrenheit	to	Celsius
fahr_to_celsius	<-	function(temp)	{
		celsius	<-	kelvin_to_celsius(fahr_to_kelvin(temp))
		return(celsius)
}

1
2
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>	fahr_to_celsius(212)
[1]	100
>	fahr_to_celsius(32)
[1]	0
>	fahr_to_celsius(-40)
[1]	-40
>	fahr_to_celsius(c(-40,	32,	212))
[1]	-40			0	100
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>	?fahr_to_celsius
No	documentation	for	‘fahr_to_celsius’	in	specified	packages	and	libraries:
you	could	try	‘??fahr_to_celsius’
>	??fahr_to_celsius
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DEMO IN SCRIPT

We add documentation as comment strings in the function
SOURCE the script

DEMO IN CONSOLE

We read the documentation by providing the function name only

SLIDE: Function Arguments

DEMO IN SCRIPT ( functions.R )

Source  script

#	Fahrenheit	to	Celsius
fahr_to_celsius	<-	function(temp)	{
		#	Convert	input	temperature	from	fahrenheit	to	celsius	scale
		#
		#	temp								-	numeric	
		#
		#	Example:
		#	>	fahr_to_celsius(c(-40,	32,	212))
		#	[1]	-40			0	100
		celsius	<-	kelvin_to_celsius(fahr_to_kelvin(temp))
		return(celsius)
}
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>	fahr_to_celsius
function(temp)	{
		#	Convert	input	temperature	from	fahrenheit	to	celsius	scale
		#
		#	temp								-	numeric	
		#
		#	Example:
		#	>	fahr_to_celsius(c(-40,	32,	212))
		#	[1]	-40			0	100
		celsius	<-	kelvin_to_celsius(fahr_to_kelvin(temp))
		return(celsius)
}
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DEMO IN CONSOLE

WHAT HAPPENED?

The code in the functions.R  file doesn't know about dplyr

We need to import the module in our script
Use the require()  function

DEMO IN SCRIPT ( functions.R )

Place require()  calls at the top of your script
Source  script

DEMO IN CONSOLE

The new column has been added

So, that's all the gapminder  data - but what if we want to get the data by year?
DEMO IN SCRIPT ( functions.R )

Source  script

#	Calculate	total	GDP	in	gapminder	data
calcGDP	<-	function(data)	{
		#	Returns	the	gapminder	data	with	additional	column	of	total	GDP
		#
		#	data												-	gapminder	dataframe
		#
		#	Example:
		#	gapminderGDP	<-	calcGDP(gapminder)
		gdp	<-	gapminder	%>%	mutate(gdp=pop	*	gdpPercap)
		return(gdp)
}
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>	calcGDP(gapminder)
Error	in	gapminder	%>%	mutate(gdp	=	pop	*	gdpPercap)	:	
		could	not	find	function	"%>%"
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require(dplyr)1

>	head(calcGDP(gapminder))
						country	year						pop	continent	lifeExp	gdpPercap									gdp
1	Afghanistan	1952		8425333						Asia		28.801		779.4453		6567086330
2	Afghanistan	1957		9240934						Asia		30.332		820.8530		7585448670
3	Afghanistan	1962	10267083						Asia		31.997		853.1007		8758855797
4	Afghanistan	1967	11537966						Asia		34.020		836.1971		9648014150
5	Afghanistan	1972	13079460						Asia		36.088		739.9811		9678553274
6	Afghanistan	1977	14880372						Asia		38.438		786.1134	11697659231

1
2
3
4
5
6
7
8



Now we have an issue - NO YEAR PROVIDED MEANS NO OUTPUT

We need to handle this
1 - PROVIDE A DEFAULT VALUE ( NULL )
2 - TEST FOR VALUE AND TAKE ALTERNATIVE ACTIONS

DEMO IN SCRIPT

Source  script

>	source('~/Desktop/swc-r-lesson/scripts/functions.R')
>	head(calcGDP(gapminder,	2002))
						country	year						pop	continent	lifeExp		gdpPercap										gdp
1	Afghanistan	2002	25268405						Asia		42.129			726.7341		18363410424
2					Albania	2002		3508512				Europe		75.651		4604.2117		16153932130
3					Algeria	2002	31287142				Africa		70.994		5288.0404	165447670333
4						Angola	2002	10866106				Africa		41.003		2773.2873		30134833901
5			Argentina	2002	38331121		Americas		74.340		8797.6407	337223430800
6			Australia	2002	19546792			Oceania		80.370	30687.7547	599847158654
>	head(calcGDP(gapminder,	c(1997,	2002)))
						country	year						pop	continent	lifeExp	gdpPercap										gdp
1	Afghanistan	1997	22227415						Asia		41.763		635.3414		14121995875
2	Afghanistan	2002	25268405						Asia		42.129		726.7341		18363410424
3					Albania	1997		3428038				Europe		72.950	3193.0546		10945912519
4					Albania	2002		3508512				Europe		75.651	4604.2117		16153932130
5					Algeria	1997	29072015				Africa		69.152	4797.2951	139467033682
6					Algeria	2002	31287142				Africa		70.994	5288.0404	165447670333
>	head(calcGDP(gapminder))
	Show	Traceback
	
	Rerun	with	Debug
	Error	in	filter_impl(.data,	quo)	:	
		Evaluation	error:	argument	"year_in"	is	missing,	with	no	default.	
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DEMO IN CONSOLE

Now let's do the same for country
DEMO IN SCRIPT

Source  script

#	Calculate	total	GDP	in	gapminder	data
calcGDP	<-	function(data,	year_in=NULL)	{
		#	Returns	the	gapminder	data	with	additional	column	of	total	GDP
		#
		#	data												-	gapminder	dataframe
		#	year_in									-	year(s)	to	report	data
		#
		#	Example:
		#	gapminderGDP	<-	calcGDP(gapminder)
		gdp	<-	gapminder	%>%	mutate(gdp=(pop	*	gdpPercap))
		if	(!is.null(year_in))	{
				gdp	<-	gdp	%>%	filter(year	%in%	year_in)
		}
		return(gdp)
}
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>	source('~/Desktop/swc-r-lesson/scripts/functions.R')
>	head(calcGDP(gapminder))
[1]	country			year						pop							continent	lifeExp			gdpPercap	gdp						
<0	rows>	(or	0-length	row.names)
>	head(calcGDP(gapminder))
						country	year						pop	continent	lifeExp	gdpPercap									gdp
1	Afghanistan	1952		8425333						Asia		28.801		779.4453		6567086330
2	Afghanistan	1957		9240934						Asia		30.332		820.8530		7585448670
3	Afghanistan	1962	10267083						Asia		31.997		853.1007		8758855797
4	Afghanistan	1967	11537966						Asia		34.020		836.1971		9648014150
5	Afghanistan	1972	13079460						Asia		36.088		739.9811		9678553274
6	Afghanistan	1977	14880372						Asia		38.438		786.1134	11697659231
>	head(calcGDP(gapminder,	year_in=2002))
						country	year						pop	continent	lifeExp		gdpPercap										gdp
1	Afghanistan	2002	25268405						Asia		42.129			726.7341		18363410424
2					Albania	2002		3508512				Europe		75.651		4604.2117		16153932130
3					Algeria	2002	31287142				Africa		70.994		5288.0404	165447670333
4						Angola	2002	10866106				Africa		41.003		2773.2873		30134833901
5			Argentina	2002	38331121		Americas		74.340		8797.6407	337223430800
6			Australia	2002	19546792			Oceania		80.370	30687.7547	599847158654
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DEMO IN CONSOLE

#	Calculate	total	GDP	in	gapminder	data
calcGDP	<-	function(data,	year_in=NULL,	country_in=NULL)	{
		#	Returns	the	gapminder	data	with	additional	column	of	total	GDP
		#
		#	data												-	gapminder	dataframe
		#	year_in									-	year(s)	to	report	data
		#
		#	Example:
		#	gapminderGDP	<-	calcGDP(gapminder)
		gdp	<-	gapminder	%>%	mutate(gdp=(pop	*	gdpPercap))
		if	(!is.null(year_in))	{
				gdp	<-	gdp	%>%	filter(year	%in%	year_in)
		}
		if	(!is.null(country_in))	{
				gdp	<-	gdp	%>%	filter(country	%in%	country_in)
		}
		return(gdp)
}
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SLIDE: Challenge 23

>	source('~/Desktop/swc-r-lesson/scripts/functions.R')
>	head(calcGDP(gapminder))
						country	year						pop	continent	lifeExp	gdpPercap									gdp
1	Afghanistan	1952		8425333						Asia		28.801		779.4453		6567086330
2	Afghanistan	1957		9240934						Asia		30.332		820.8530		7585448670
3	Afghanistan	1962	10267083						Asia		31.997		853.1007		8758855797
4	Afghanistan	1967	11537966						Asia		34.020		836.1971		9648014150
5	Afghanistan	1972	13079460						Asia		36.088		739.9811		9678553274
6	Afghanistan	1977	14880372						Asia		38.438		786.1134	11697659231
>	head(calcGDP(gapminder,	1957))
						country	year						pop	continent	lifeExp	gdpPercap										gdp
1	Afghanistan	1957		9240934						Asia		30.332			820.853			7585448670
2					Albania	1957		1476505				Europe		59.280		1942.284			2867792398
3					Algeria	1957	10270856				Africa		45.685		3013.976		30956113720
4						Angola	1957		4561361				Africa		31.999		3827.940		17460618347
5			Argentina	1957	19610538		Americas		64.399		6856.856	134466639306
6			Australia	1957		9712569			Oceania		70.330	10949.650	106349227169
>	head(calcGDP(gapminder,	1957,	"Egypt"))
		country	year						pop	continent	lifeExp	gdpPercap									gdp
1			Egypt	1957	25009741				Africa		44.444		1458.915	36487093094
>	head(calcGDP(gapminder,	"Egypt"))
[1]	country			year						pop							continent	lifeExp			gdpPercap	gdp						
<0	rows>	(or	0-length	row.names)
>	head(calcGDP(gapminder,	country_in="Egypt"))
		country	year						pop	continent	lifeExp	gdpPercap										gdp
1			Egypt	1952	22223309				Africa		41.893		1418.822		31530929611
2			Egypt	1957	25009741				Africa		44.444		1458.915		36487093094
3			Egypt	1962	28173309				Africa		46.992		1693.336		47706874227
4			Egypt	1967	31681188				Africa		49.293		1814.881		57497577541
5			Egypt	1972	34807417				Africa		51.137		2024.008		70450495584
6			Egypt	1977	38783863				Africa		53.319		2785.494	108032201472
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SLIDE: Learning Objectives

In this final section, we'll be learning how to create reproducible, attractive, dynamic reports
To do so, we'll learn some markdown syntax, and how to put working R code into a document
We'll also look at generating the report in a number of file formats, for sharing.

SLIDE: Literate Programming

What we're about to do is an example of Literate Programming, a concept introduced by Donald
Knuth
The idea of Literate Programming is that

The program or analysis is explained in natural language
The code needed to run the program/analysis is embedded in the document
The whole document is executable

#	Plot	grid	of	country	life	expectancy
plotLifeExp	<-	function(data,	letter=letters,	wrap=FALSE)	{
		#	Return	ggplot2	chart	of	life	expectancy	against	year
		#
		#	data										-	gapminder	dataframe
		#	letter								-	start	letters	for	countries
		#	wrap										-	logical:	wrap	graphs	by	country
		#
		#	Example:
		#	>	plotLifeExp(gapminder,	c('A',	'Z'),	wrap=TRUE)
		starts.with	<-	substr(data$country,	start	=	1,	stop	=	1)
		az.countries	<-	data[starts.with	%in%	letter,	]
		p	<-	ggplot(az.countries,	aes(x=year,	y=lifeExp,	colour=country))
		p	<-	p	+	geom_line()
		if	(wrap)	{
				p	<-	p	+	facet_wrap(~country)
		}
		return(p)
}
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11. Dynamic Reports



We can produce these documents in RStudio

SLIDE: Create an R Markdown  file

In R , literate programming is **implemented in R Markdown  files
To create one: File  $\rightarrow$ New File  $\rightarrow$ R Markdown

There is a dialog box - enter a title ( Literate Programming )
Save the file ( Ctrl-S ) - create new subdirectory ( markdown ) -
literate_programming.Rmd

The file gets the extension .Rmd

The file is autopopulated with example text

SLIDE: Components of an R Markdown  file

The HEADER REGION IS FENCED BY ---

Metadata (author, title, date)
Requested output format

Natural language is written as plain text, with some extra characters to define formatting

NOTE THE HASHES # , ASTERISKS *  AND ANGLED BRACKETS <>

R  code runs in the document, and is fenced by backticks

CLICK ON KNIT

A new (pretty) document is produced in a new window

CROSS REFERENCE MARKDOWN TO DOCUMENT

Title, Author, Date
Header
Link
Bold
R  code and output

---
title:	"Literate	Programming"
author:	"Leighton	Pritchard"
date:	"04/12/2017"
output:	html_document
---
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Plots

CLICK ON KNIT TO PDF

A new .pdf  document opens in a new window

CROSS REFERENCE MARKDOWN TO DOCUMENT

NOTE: The formatting isn't identical

CLICK ON KNIT TO WORD

A new Word  document opens up

CROSS REFERENCE MARKDOWN TO DOCUMENT

NOTE: The formatting isn't identical

NOTE THE LOCATION OF THE OUTPUT FILES - ALL IN THE SOURCE DIRECTORY

CLOSE THE OUTPUT

SLIDE: Creating a Report

We'll create a report on the gapminder  data

DELETE THE EXISTING TEXT/CODE CHUNKS ( literate_programming.Rmd )

Change the title ( Life Expectancies )
Define the input data location in the setup  section

Code in the setup  section is run, but not shown (knit to demo)
include = FALSE

Write introduction and KNIT

Header notation with the hash #

Inline R  to name the data used
We can define the location of the data in one place, and reuse the variable/have it
propagate when we update the data
Import the data in setup

Write next section ( Life expectancy in countries )

Source  the functions.R  file to get our solution to Challenge 23 ( plotLifeExp )
Use the imported function
{r echo=FALSE}  shows output but not the code



Change the letters

Change the letters to something else
Re-run the document

Add Numbered Table of Contents (where possible)

Make the required changes in the header

We will present the life expectancies over time in a set of countries, using the gapminder data in the file
r datapath .

We will specifically focus on countries beginning with the letters: r az .

---
title:	"Life	Expectancies"
author:	"Leighton	Pritchard"
date:	"04/12/2017"
output:
		pdf_document:
				toc:	true
				number_sections:	true
		html_document:
				toc:	true
				toc_float:	true
				number_sections:	true
		word_document:
				toc:	true
---

```{r	setup,	include=FALSE}
knitr::opts_chunk$set(echo	=	TRUE)

#	Path	to	gapminder	data
datapath	<-	"../data/gapminder-FiveYearData.csv"

#	Letters	to	report	on
az	<-	c('G',	'Y',	'R')

#	Load	gapminder	data
gapminder	<-	read.csv(datapath,	sep=",",	header=TRUE)

#	Source	functions	from	earlier	lesson
source("../scripts/functions.R")
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In countries starting with these letters, the life expectancy is as plotted below.

We use the code from our earlier challenge solution

Life expectancy in r az  countries

plotLifeExp1

plotLifeExp(gapminder,	az,	wrap=TRUE)1


