
Speaker Notes for the 2015-11-16 CoDiMa Software Carpentry Make lesson.

Set this up before slides/speaking.

USE A SHORT PATH, e.g. ~/Desktop/make .

Also, download the lesson materials

TYPE ALL EXAMPLES AS YOU GO. THIS KEEPS THE SPEED SANE, AND ALLOWS YOU TO
EXPLAIN EVERY STEP.

USE ls TO SHOW FILE CREATION/DELETION

Make is a build manager
We want to build things: targets

executable programs
data analysis outputs
visualisations of data
documents/presentations

The targets may depend on input or intermediate files (which may also be targets)

data files
analysis files

Make organises the construction of output targets from their inputs
Makefiles define the dependencies and rules for building

Make will only build a target:

SPEAKER_NOTES.md

Capturing shell output

$	export	PATH=${PATH}:~/Development/GitHub/Teaching/recording-script/
$	recordsession.sh	git@github.com:kkwakwa/2015-11-16-manchester-codima.git	codima_lessons/make/runthrough_shell	30

1
2

$	wget	http://swcarpentry.github.io/make-novice/make-lesson.tar.gz1

Go through introduction to Make

if it is missing
if a dependency has changed

Other tools do similar things, but the fundamental concepts are the same

Make is used in many contexts

compiling programs
bioinformatics pipelines
visualisation of analyses
combining text and figures for papers

Download materials before you start, and make sure you're in the right directory.

PAUSE to solve problems with the downloads

Join in the live coding by unpacking the archive:

Test if Make works:

PAUSE to be sure everyone has Make working.

The script wordcount.py reads a text file, counts the words, and outputs a data file - slides while
live coding

Look at the output

Getting ready

$	tar	-xvf	make-lesson.tar.gz
$	cd	make-lesson

1
2

	make
make:	***	No	targets	specified	and	no	makefile	found.		Stop.
$	make	-h	|	head

1
2
3

Automation and Make

$	python	wordcount.py	books/isles.txt	isles.dat1

$	head	-n	5	isles.dat
the	3822	6.7371760973
of	2460	4.33632998414
and	1723	3.03719372466
to	1479	2.60708619778
a	1308	2.30565838181

1
2
3
4
5
6

Three columns of text, one row per word

1. the word
2. the count of the word in the text
3. the fraction of all words in the text that are this word

We might run it on one file, but we could need to run it on several.

Second example:

There's a script plotcount.py that produces a graph from the data - shows a bar chart of the 10
most frequent words

This produces a live window.
Close the window to proceed

PAUSE in case there are any problems. It doesn't matter if there's an issue, as we'll use the output files,
anyway.

The script also generates output files

These are the steps of a generic analysis and visualisation workflow
EMPHASISE GENERIC WORKFLOW NATURE

1. Read a file
2. Do analysis
3. Write intermediate results
4. Visualise/process results
5. Write final output

Working at the command line is OK for a small number of files, but doesn't scale well when we need to
process 100s of inputs

boring
errors can happen - ESPECIALLY FOR COMPLEX SEQUENCE OF COMMANDS

$	python	wordcount.py	books/abyss.txt	abyss.dat
$	head	-n	5	abyss.dat
the	4044	6.35449402891
and	2807	4.41074795726
of	1907	2.99654305468
a	1594	2.50471401634
to	1515	2.38057825267

1
2
3
4
5
6
7

$	python	plotcount.py	isles.dat	show1

$	python	plotcount.py	isles.dat	isles.jpg1

going back to check for errors is also boring and error-prone

Automation is critical - AUTOMATE WORKFLOWS

We could do this with a script, so why use Make ?

With a script:

Unless you're very clever, you run on all files. But what if only one input changes? That's slow
and wasteful

With Make :

Rebuilds only happen if dependencies change, or targets go missing
Dependencies are explicit - SELF-DOCUMENTING
One system to cover many eventualities
THE FUNDAMENTAL CONCEPTS COMMON TO BUILD TOOLS

Create a Makefile

USE NANO IN ANOTHER SHELL/TERMINAL
STUDENTS: USE THE EDITOR YOU LIKE BEST

Makefile contents:

PAUSE to be sure everyone can edit and save

Go through the elements, prompted by slides
#

target/dependency line
action line(s)

THE SPACE AT THE START OF THE ACTION LINE IS A TAB!!

DELETE .dat AND .jpg FILES

Try the Make :

Makefiles

#	Count	words.
isles.dat	:	books/isles.txt
								python	wordcount.py	books/isles.txt	isles.dat

1
2
3

!!!Live coding exercises!!!

$	rm	*.dat	*.jpg1

PAUSE There will be errors! Let them be dealt with

DEMONSTRATE ERRORS (NO MAKEFILE; SPACE FOR TAB)

A successful Make prints out the actions it executes.
RERUN MAKEFILE

Make tells us if nothing needs to be done

DEMONSTRATE TOUCH

We can use the touch command to update the timestamp on one of the dependencies

This makes it look like it's been edited

COMPARE TIMESTAMPS

isles.dat NOW LOOKS OLDER THAN isles.txt DEPENDENCY triggering a rebuild

Add a second rule to the Makefile:

RUN MAKE WITH NO ARGUMENTS

Make tries to build only the first (default target)
We have to tell it to build abyss.dat explicitly

$	make
make:	***	No	targets	specified	and	no	makefile	found.		Stop.
$	make
Makefile:3:	***	missing	separator	(did	you	mean	TAB	instead	of	8	spaces?).		Stop.
$	make
python	wordcount.py	books/isles.txt	isles.dat

1
2
3
4
5
6

$	make
make:	`isles.dat'	is	up	to	date.

1
2

$	touch	books/isles.txt1

$	ls	-l	books/isles.txt	isles.dat1

$	make
python	wordcount.py	books/isles.txt	isles.dat

1
2

abyss.dat	:	books/abyss.txt
								python	wordcount.py	books/abyss.txt	abyss.dat

1
2

$	make
make:	`isles.dat'	is	up	to	date.

1
2

PAUSE - everyone OK?

We may want to remove all our data files so we can recreate them.
We use a NEW TARGET and a NEW RULE, clean

THIS RULE HAS NO DEPENDENCIES
Run the Makefile

We're NOT BUILDING SOMETHING CALLED CLEAN
This can cause problems:

Create a directory called clean and run make clean

Make finds clean and, because it has no dependencies, assumes it's up to date
We need to tell Make to always execute this rule when asked
We need to make clean a PHONY TARGET

Now make clean works:

Let's add a similar phony target to make all the data files

$	ls
$	make	abyss.dat
python	wordcount.py	books/abyss.txt	abyss.dat
$	ls

1
2
3
4

clean	:	
								rm	-f	*.dat

1
2

$	ls
$	make	clean
rm	-f	*.dat
$	ls

1
2
3
4

$	mkdir	clean
$	ls
$	make	clean
make:	`clean'	is	up	to	date.

1
2
3
4

.PHONY	:	clean
clean	:	
								rm	-f	*.dat

1
2
3

$	make	clean
rm	-f	*.dat

1
2

.PHONY	:	dats
dats	:	isles.dat	abyss.dat

1
2

This is a RULE WHOSE DEPENDENCIES ARE TARGETS OF OTHER RULES
Make checks to see if the dependencies exist; if not, it looks for rules that create them
We use these kinds of rules to trigger builds of the dependencies.

NOTE: THE ORDER OF BUILDING DEPENDENCIES IS ARBITRARY

DEPENDENCIES MUST BE A DIRECTED ACYCLIC GRAPH

Running the build (REPEAT TO TEST)

PAUSE Everyone up to speed?

RECAP ELEMENTS to help catch up

phony target - triggers build
one rule per target data file
phony target to clean data

show dependency graph

Describe exercise on slide, and have a breather.

Demonstrate solution

$	ls
$	make	dats
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
$	ls
$	make	dats
make:	Nothing	to	be	done	for	`dats'.

1
2
3
4
5
6
7

!!!Back to slides!!!

Exercise (10min)

Show dependency graph

PAUSE to make sure everyone is caught up

Our Makefile has duplication.
There are lots of REPEATED NAMES - this can be a problem:

forgetting to rename after a change
typos from repetitive typing

Goal is to REDUCE REPETITION for CODE ROBUSTNESS

One type of repetition is the name of target of a rule

There's a special AUTOMATIC VARIABLE that can be used to replace the target of the current rule in
any actions: $@

REPLACE IN Makefile

#	Count	words.
.PHONY	:	dats
dats	:	isles.dat	abyss.dat	last.dat

isles.dat	:	books/isles.txt
								python	wordcount.py	books/isles.txt	isles.dat

abyss.dat	:	books/abyss.txt
								python	wordcount.py	books/abyss.txt	abyss.dat

last.dat	:	books/last.txt
								python	wordcount.py	books/last.txt	last.dat

#	Generate	archive	file.
analysis.tar.gz	:	isles.dat	abyss.dat	last.dat
								tar	-czf	analysis.tar.gz	isles.dat	abyss.dat	last.dat

.PHONY	:	clean
clean	:
								rm	-f	*.dat
								rm	-f	analysis.tar.gz

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

$	make	analysis.tar.gz
python	wordcount.py	books/last.txt	last.dat
tar	-czf	analysis.tar.gz	isles.dat	abyss.dat	last.dat

1
2
3

Automatic variables

TEST

Another type of repetition is that dependencies show up in the dependencies and the action
There's a special AUTOMATIC VARIABLE that can be used to replace the dependencies of the
current rule in any actions: $^

REPLACE IN Makefile

TEST

TRY THE BASH WILDCARD

Let's try using the bash wild-card for our dependencies in the analysis.tar.gz rule

touch inputs and re-run

analysis.tar.gz	:	isles.dat	abyss.dat	last.dat
								tar	-czf	$@	isles.dat	abyss.dat	last.dat

1
2

$	touch	books/*.txt
$	make	analysis.tar.gz
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/last.txt	last.dat
tar	-czf	analysis.tar.gz	isles.dat	abyss.dat	last.dat

1
2
3
4
5
6

analysis.tar.gz	:	isles.dat	abyss.dat	last.dat
								tar	-czf	$@	$^

1
2

$	touch	books/*.txt
$	make	analysis.tar.gz
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/last.txt	last.dat
tar	-czf	analysis.tar.gz	isles.dat	abyss.dat	last.dat

1
2
3
4
5
6

!!!Live coding exercises!!!

#	Generate	archive	file.
analysis.tar.gz	:	*.dat
								tar	-czf	$@	$^

1
2
3

$	touch	books/*.txt
$	make	analysis.tar.gz
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/last.txt	last.dat
tar	-czf	analysis.tar.gz	abyss.dat	isles.dat	last.dat

1
2
3
4
5
6

This all seems to work well, but…

DELETE DATA FILES AND RERUN RULE

This doesn't work.
No files match the pattern *.dat

Make tries to use *.dat as a filename, but there isn't one - so there's an error

WE NEED TO REBUILD THE .dat FILES EXPLICITY

MCQ: Updating Dependencies

Ask question - use stickies to indicate the answer: DON'T EXECUTE THE CODE

ASK PEOPLE TO FIND SOMEONE NEARBY WHO HAS A DIFFERENT ANSWER - DISCUSS THEIR
ANSWERS: WHY DO YOU THINK YOU'RE RIGHT?

Ask question again - people can change their answer

Ask people to run the code

The answer is (4) - only analysis.tar.gz is recreated

The $^ automatic variable works well if all the dependencies are treated the same
Sometimes we want to treat the first dependency differently from the rest

e.g. as the only input file from all of the dependencies

Make has an automatic variable meaning "the first dependency of the current rule": $<

$	make	clean
rm	-f	*.dat
rm	-f	analysis.tar.gz
$	make	analysis.tar.gz
make:	***	No	rule	to	make	target	`*.dat',	needed	by	`analysis.tar.gz'.		Stop.

1
2
3
4
5

$	make	dats
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/last.txt	last.dat
$	make	analysis.tar.gz
tar	-czf	analysis.tar.gz	abyss.dat	isles.dat	last.dat

1
2
3
4
5
6

!!!Back to the slides!!!

$	touch	*.dat
$	make	analysis.tar.gz
tar	-czf	analysis.tar.gz	abyss.dat	isles.dat	last.dat

1
2
3

More automatic variable info at https://www.gnu.org/software/make/manual/html_node/Automatic-
Variables.html

Describe exercise on slide, and have a breather.

Demonstrate solution

BEFORE GOING ON TO FIRST SLIDE IN SECTION

QUESTION: Would changing wordcount.py potentially change the output?

QUESTION: What happens if we modify wordcount.py ?

The output data files are not just a product of the data, but also the code that generates them
If wordcount.py changes, the output might change, but our Makefile doesn't reflect this yet.
We need to add wordcount.py as a dependency
OUTPUT DEPENDS ON BOTH CODE AND DATA

Change the .dat rules:

Exercise (5min)

isles.dat	:	books/isles.txt
				python	wordcount.py	$<	$@

abyss.dat	:	books/abyss.txt
				python	wordcount.py	$<	$@

last.dat	:	books/last.txt
				python	wordcount.py	$<	$@

1
2
3
4
5
6
7
8

$	make	clean
rm	-f	*.dat
rm	-f	analysis.tar.gz
$	make	dats
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/last.txt	last.dat
$	make	analysis.tar.gz
tar	-czf	analysis.tar.gz	abyss.dat	isles.dat	last.dat

1
2
3
4
5
6
7
8
9

Dependencies on data and code

!!Live coding exercise!!

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

PAUSE to let people catch up

What happens if we pretend to edit wordcount.py ?

TOUCH wordcount.py

Dependency graph
All the .dat files now also depend on wordcount.py

**QUESTION: why don't .txt files depend on wordcount.py ?

.txt files are input files and have no dependencies. To make these depend on
wordcount.py would introduce a false dependency.

Now that the final output depends on wordcount.py , we should add the code to our complete
archive

isles.dat	:	books/isles.txt	wordcount.py
								python	wordcount.py	$<	$@																				

abyss.dat	:	books/abyss.txt	wordcount.py
								python	wordcount.py	$<	$@																				

last.dat	:	books/last.txt	wordcount.py
								python	wordcount.py	$<	$@

1
2
3
4
5
6
7
8

$	make	clean
rm	-f	*.dat
rm	-f	analysis.tar.gz
$	make	dats
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/last.txt	last.dat

1
2
3
4
5
6
7

$	make	dats
make:	Nothing	to	be	done	for	`dats'.
$	touch	wordcount.py
$	make	dats
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/last.txt	last.dat

1
2
3
4
5
6
7

!!Back to slides!!

!!Live coding exercise!!

PAUSE Is everyone up to this point?

We still have repetition
The .dat rules only vary by text and data filenames
We can replace these with a single pattern rule

THE PATTERN RULE LETS US BUILD ANY .dat FILE FROM a .txt FILE IN books/

% is a Make wildcard

Used only in targets and dependencies, NOT ACTIONS
Matches dependencies with targets
$* is a special variable that "catches" the contents of % - it is replaced by the stem which

matches the % pattern rule

Replace the three .dat rules

PAUSE Is everyone keeping up?

Our Makefile is now much shorter, and cleaner

Make allows us to define variables (or macros) that can hold values.

Putting a value in a variable is called assignment

#	Generate	archive	file.
analysis.tar.gz	:	*.dat	wordcount.py
								tar	-czf	$@	$^

1
2
3

$	make	analysis.tar.gz
tar	-czf	analysis.tar.gz	abyss.dat	isles.dat	last.dat	wordcount.py

1
2

Pattern rules

%.dat	:	books/%.txt	wordcount.py
								python	wordcount.py	$<	$*.dat

1
2

$	make	clean
rm	-f	*.dat
rm	-f	analysis.tar.gz
$	make	dats
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/last.txt	last.dat

1
2
3
4
5
6
7

Make variables

If we define a variable VAR , then we have to reference it in parentheses as $(VAR)

We have tried to reduce repetition, but we have introduced some

wordcount.py occurs several times
if we renamed the script, we'd have to make several changes

To reduce duplication further, let's use a variable to replace all occurrences of wordcount.py

AT THE TOP OF THE Makefile

This script is always invoked by passing it to python .

That may not be true for a replacement script
we can use another variable to give us flexibility in our script language
comment so we know what we're doing

Describe exercise on slide, and have a breather.

Demonstrate solution

IT'S GOOD PRACTICE TO WRITE MODULAR CODE

Decoupling source code from configuration (e.g. input filenames) is good practice

modular

COUNT_SRC=wordcount.py1

#	Count	words	script.
COUNT_SRC=wordcount.py
COUNT_EXE=python	$(COUNT_SRC)

1
2
3

Exercise (10min): Use variables

%.dat	:	books/%.txt	$(COUNT_SRC)
								$(COUNT_EXE)	$<	$*.dat

#	Generate	archive	file.
analysis.tar.gz	:	*.dat	$(COUNT_SRC)
								tar	-czf	$@	$^

1
2
3
4
5
6

$	touch	books/*.txt
$	make	analysis.tar.gz
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/last.txt	last.dat
tar	-czf	analysis.tar.gz	abyss.dat	isles.dat	last.dat	wordcount.py

1
2
3
4
5
6

flexible
maintainable
reusable

Putting input names at the top of the Makefile is convenient

Putting them into a separate configuration Makefile is better
Changing a script name only requires editing a configuration, not source code

CREATE config.mk

REMOVE SAME LINES FROM Makefile

Replace with include

CONGRATULATIONS - YOU'VE WRITTEN MODULAR, MAINTAINABLE CODE!

We can write more complex rules, using Make functions

We might want to analyse all .txt files in a directory, without knowing ahead of time
what they are called

We can use the wildcard function to get a list of files that match some pattern, and save them in a
variable.

$	nano	config.mk1

#	Count	words	script.
COUNT_SRC=wordcount.py
COUNT_EXE=python	$(COUNT_SRC)

1
2
3

include	config.mk1

$	make	clean
rm	-f	*.dat
rm	-f	analysis.tar.gz
$	make	dats
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/last.txt	last.dat
$	make	analysis.tar.gz
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/last.txt	last.dat
tar	-czf	analysis.tar.gz	abyss.dat	isles.dat	last.dat	wordcount.py

1
2
3
4
5
6
7
8
9
10
11
12

Make functions

ADD THE CODE, AND EXPLAIN THE FUNCTION STRUCTURE

We can use a .PHONY target called variables to show the value of that variable

QUESTION: why do we use @echo rather than echo ?

The file sierra.txt is now included in our set of input files

To illustrate the point about @echo

Using @echo suppresses writing the command to STDOUT

Dependency graph shows that all four books/*.txt files are included

If you add another .txt file to that directory, it will also be included

The patsubst function replaces one sequence of characters with another

The function takes a pattern, a replacement string, and a list of names, in that order.
Each name in the list matching the pattern, is replaced by the replacement string - only the stem
represented by the % is kept

Explain the function on the slide

Create the variable and extend the variables target

TXT_FILES=$(wildcard	books/*.txt)1

.PHONY	:	variables
variables:
				@echo	TXT_FILES:	$(TXT_FILES)

1
2
3

!!Live coding exercise!!
	make	variables
TXT_FILES:	books/abyss.txt	books/isles.txt	books/last.txt	books/sierra.txt

1
2

.PHONY	:	variables
variables	:
								echo	TXT_FILES:	$(TXT_FILES)

1
2
3

$	make	variables
echo	TXT_FILES:	books/abyss.txt	books/isles.txt	books/last.txt	books/sierra.txt
TXT_FILES:	books/abyss.txt	books/isles.txt	books/last.txt	books/sierra.txt

1
2
3

!!Back to slides!!

Now that sierra.txt is processed, we can modify the dats rule dependencies

and our clean target

Let's test:

We can also rewrite the analysis.tar.gz rule, and test the Makefile

DAT_FILES=$(patsubst	books/%.txt,	%.dat,	$(TXT_FILES))

.PHONY	:	variables
variables	:
								@echo	TXT_FILES:	$(TXT_FILES)
								@echo	DAT_FILES:	$(DAT_FILES)

1
2
3
4
5
6

!!Live coding exercise!!
$	make	variables
TXT_FILES:	books/abyss.txt	books/isles.txt	books/last.txt	books/sierra.txt
DAT_FILES:	abyss.dat	isles.dat	last.dat	sierra.dat

1
2
3

#	Count	words.
.PHONY	:	dats
dats	:	$(DAT_FILES)			

1
2
3

.PHONY	:	clean
clean	:
								rm	-f	$(DAT_FILES)
								rm	-f	analysis.tar.gz

1
2
3
4

$	make	clean
rm	-f		abyss.dat		isles.dat		last.dat		sierra.dat
rm	-f	analysis.tar.gz

1
2
3

$	make	dats
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/last.txt	last.dat
python	wordcount.py	books/sierra.txt	sierra.dat

1
2
3
4
5

$	make	clean
rm	-f	abyss.dat		isles.dat		last.dat		sierra.dat
rm	-f	analysis.tar.gz
$	make	analysis.tar.gz
python	wordcount.py	books/abyss.txt	abyss.dat
python	wordcount.py	books/isles.txt	isles.dat
python	wordcount.py	books/last.txt	last.dat
python	wordcount.py	books/sierra.txt	sierra.dat
tar	-czf	analysis.tar.gz	abyss.dat	isles.dat	last.dat	sierra.dat	wordcount.py

1
2
3
4
5
6
7
8
9

PAUSE see if people have caught up

The problem with *.dat (required us to run make dats) has gone away

Using functions lets us generate .dat filenames automatically from books/*.txt files

THIS ALLOWS US TO PROCESS ALL books/*.txt FILES WITHOUT KNOWING THEIR NAMES
AHEAD OF TIME

NO INPUT FILES ARE NAMED IN THIS CODE

Make
Automates repetitive commands
Reduces risk of error
Only updates files/outputs when dependencies have changed
Only builds what hasn't already been built
Code acts as documentation, recording dependencies and specifying how to generate all outputs
from their inputs

Explain the exercise

Have a breather

Before showing the solution, show the dependency graph

SHOW THE SOLUTION

For config.mk :

For Makefile :

!!Back to slides!!

Conclusions

Exercise (15min)

#	Count	words	script.
COUNT_SRC=wordcount.py
COUNT_EXE=python	$(COUNT_SRC)
PLOT_SRC=plotcount.py
PLOT_EXE=python	$(PLOT_SRC)

1
2
3
4
5

include	config.mk

#	All	text	files
TXT_FILES=$(wildcard	books/*.txt)
DAT_FILES=$(patsubst	books/%.txt,	%.dat,	$(TXT_FILES))
JPG_FILES=$(patsubst	books/%.txt,	%.jpg,	$(TXT_FILES))

.PHONY	:	variables
variables	:
								@echo	TXT_FILES:	$(TXT_FILES)
								@echo	DAT_FILES:	$(DAT_FILES)
								@echo	JPG_FILES:	$(JPG_FILES)

#	Count	words.
.PHONY	:	dats
dats	:	$(DAT_FILES)

%.dat	:	books/%.txt	$(COUNT_SRC)
								$(COUNT_EXE)	$<	$*.dat

#	Plot	counts
.PHONY	:	jpgs
jpgs	:	$(JPG_FILES)

%.jpg	:	%.dat	$(PLOT_SRC)
								$(PLOT_EXE)	$<	$*.jpg

#	Generate	archive	file.
analysis.tar.gz	:	$(DAT_FILES)	$(JPG_FILES)	$(COUNT_SRC)	$(PLOT_SRC)
								tar	-czf	$@	$^

.PHONY	:	clean
clean	:
								rm	-f	$(DAT_FILES)	$(JPG_FILES)
								rm	-f	analysis.tar.gz

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

