
These notes are a guide to the speaker, as they present the material.

SLIDE Building Programs With Python (1)

SLIDE INTRODUCTION

SLIDE GOAL 1

We are teaching programming, not Python per se
We need to use some language, though
Python is free, and likely to be usable on your machine
Python is widely-used, and there's lots of support online
It can be easier for novices to pick up than other languages
You should use what is common in your area/with your colleagues
The principles of programming are the same in other languages

SLIDE GOAL 2

We're using a motivating example of data analysis
Data is in plain text, tabular (CSV)
Data represents patients and daily measurements
We're going to analyse the data
We're going to visualise the data
We're going to get the computer to do this for us
Automation is key: fewer human mistakes, easier to apply to other datasets, and share with others
(transparency)

SLIDE SETUP

SLIDE SETTING UP DEMO

We want a neat (clean) working environment
IF NECESSARY!
Change directory to desktop (in terminal or Explorer)
Change your working directory to python-novice-inflammation (from yesterday/earlier)

LESSON 02 - Building Programs With Python

SLIDE GETTING STARTED

SLIDE STARTING JUPYTER DEMO

Start Jupyter from the command-line

SLIDE JUPYTER LANDING PAGE DEMO

Landing page is a file browser, like Explorer/Finder
Point out Python (.py) files, .zip files, and directories)
Point out directory (data), and how the file symbols are different.
Point out New button.

SLIDE CREATE A NEW NOTEBOOK DEMO

SLIDE MOTIVATION

We wrote some code that plots values of interest from multiple datasets, but that code is long and
complicated
The code is also not very flexible if we want to deal with thousands of files, and we can't modify it to
plot only a subset of files very easily
Cutting and pasting is slow and error-prone
SO we need to package our code for reuse.
We do this by writing functions

SLIDE FUNCTIONS

SLIDE WHAT IS A FUNCTION?

Functions in code work like mathematical functions, like y=f(x)

f() is the function
x is an input (or inputs)
y is the returned value, or output(s)

The function's output y depends in some way on the value of x - defined by f() .
Not all functions in code take an input, or produce a usable output, but the principle is
generally the same.

SLIDE MY FIRST FUNCTION

We'll write a function to convert Fahrenheit to Kelvin, called fahr_to_kelvin()

The mathematical function is described:
This function takes x , subtracts 32, multiplies by 5/9, and adds 273.15

In Python this translates to the code below

Functions are defined by the def keyword
The name of the function follows the def keyword (equivalent to f in the mathematical
example)
The parameters or inputs to the function are then defined in parentheses. These get a variable
name which only exists within the function. Here, there is one parameter, called temp .
The function performs a calculation, which is returned by the return statement.
The value of temp is taken through the same calculation as in the mathematical function, and
is then returned.

Demo code

SLIDE Calling the function

We call fahr_to_kelvin in exactly the same way we call any other function we've seen so far

SLIDE Composing functions

Composing Python functions works just like mathematical functions: y = f(g(x))

Suppose we have a function that converts Kelvin to Celsius, called kelvin_to_celsius()

Demo code

We could convert a temperature in fahrenheit (temp_f) to a temperature in celsius (temp_c) by
executing the code:

SLIDE NEW FUNCTIONS FROM OLD

We can wrap this composed function inside a new function: fahr_to_celsius :

print('freezing	point	of	water:',	fahr_to_kelvin(32))
print('boiling	point	of	water:',	fahr_to_kelvin(212))

1
2

def	kelvin_to_celsius(temp_k):
				return	temp_k	-	273.15
print('absolute	zero	in	Celsius:',	kelvin_to_celsius(0.0))

1
2
3

temp_f	=	212.0
temp_c	=	kelvin_to_celsius(fahr_to_kelvin(temp_f))
print(temp_c)

1
2
3

Demo code

This is how programs are built: combining small bits into larger bits until the function we want
is obtained

SLIDE EXERCISE 01

SLIDE SCOPE

Variables defined within a function, including parameters, are not 'visible' outside the function
This is called function scope Demo code

To move values to and from functions, you should generally return them from the function
Demo code

SLIDE EXERCISE 02

Solution: 1: 7 3 (this differs from that on the SWC page)

SLIDE ANALYSIS

def	fahr_to_celsius(temp_f):
				return	kelvin_to_celsius(fahr_to_kelvin(temp_f))
print('freezing	point	of	water	in	Celsius:',	fahr_to_celsius(32.0))

1
2
3

def	outer(s)
				return	s[0]	+	s[-1]

1
2

a	=	"Hello"

def	my_fn(a):
		a	=	"Goodbye"
		
my_fn(a)		
print(a)

1
2
3
4
5
6
7

a	=	"Hello"

def	my_fn(a):
		a	=	"Goodbye"
		
a	=	my_fn(a)
print(a)

1
2
3
4
5
6
7

SLIDE TIDYING UP

Now we can write functions
Let's make the inflammation analysis easier to reuse
Do the imports!

SLIDE ANALYSE()

We'll write a function called analyse() that plots the data
Demo code

SLIDE DETECT_PROBLEMS()

We noticed before that some data was questionable
This function spots problems with the data:

The first datapoint is 0, and the 20th is 20
The sum of all minima is zero

Demo code

%pylab	inline

import	matplotlib.pyplot
import	numpy	as	np
import	os
import	seaborn

1
2
3
4
5
6

def	analyze(data):
				fig	=	matplotlib.pyplot.figure(figsize=(10.0,	3.0))

				axes1	=	fig.add_subplot(1,	3,	1)
				axes2	=	fig.add_subplot(1,	3,	2)
				axes3	=	fig.add_subplot(1,	3,	3)

				axes1.set_ylabel('average')
				axes1.plot(numpy.mean(data,	axis=0))

				axes2.set_ylabel('max')
				axes2.plot(numpy.max(data,	axis=0))

				axes3.set_ylabel('min')
				axes3.plot(numpy.min(data,	axis=0))

				fig.tight_layout()
				matplotlib.pyplot.show()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

SLIDE CODE REUSE

Now we can identify the input files, then apply one function per action in a loop:
Load the data with np.loadtxt()

Print the filename
analyse() the data
detect_problems() in the data

Demo code

The code is much shorter (as we read it, here)
The function names are human-readable and descriptive
It is much easier to see what the code is doing

SLIDE TESTING AND DOCUMENTATION

SLIDE MOTIVATION

Once a useful function is written, it gets reused over and over, often without further checking
When you write a function you should:

Test output for correctness
Document the expected function

We'll demonstrate this with a function to centre a numerical array
Demo code

def	detect_problems(data):
				if	numpy.max(data,	axis=0)[0]	==	0	and	numpy.max(data,	axis=0)[20]	==	20:
								print('Suspicious	looking	maxima!')
				elif	numpy.sum(numpy.min(data,	axis=0))	==	0:
								print('Minima	add	up	to	zero!')
				else:
								print('Seems	OK!')

1
2
3
4
5
6
7

filenames	=	[os.path.join('data',	f)	for	f	in	os.listdir('data')
													if	f.startswith('inflammation')]
for	fname	in	filenames:
				data	=	np.loadtxt(fname,	delimiter=",")
				print(fname)
				analyse(data)
				detect_problems(data)							

1
2
3
4
5
6
7

def	centre(data,	desired):
				return	(data	-	np.mean(data))	+	desired

1
2

SLIDE TEST DATASETS

We could try centre() on our real data, but we don't know what the answer should be!*
We'll use numpy 's zeros() function to generate an input set where we know the answer
Demo code

If this works, we'll try it on real data

SLIDE REAL DATA

Demo code

This looks OK, but how would we know it worked?

SLIDE CHECK PROPERTIES

We can check properties of the original and centred data
mean , min , max , std

We'd expect the mean of the new dataset to be approximately 0.0

The variance of the dataset should be unchanged.
Also, the range (max - min) should be unchanged.
Demo code

The range and variance are as expected, but the mean is not quite 0.0

The function is probably OK, as-is

SLIDE DOCUMENTING FUNCTIONS

We can document what our function does by writing comments in the code, and this is a good thing.
But Python allows us to document what a function does directly in the function using a docstring.

z	=	np.zeros((2,	2))
print(centre(z,	3.0))

1
2

data	=	numpy.loadtxt(fname='data/inflammation-01.csv',	delimiter=',')
print(centre(data,	0))

1
2

centred	=	centre(data,	0)
print('original	min,	mean,	and	max	are:',	np.min(data),	np.mean(data),	np.max(data))
print('min,	mean,	and	max	of	centered	data	are:',	np.min(centred),
						np.mean(centred),	np.max(centred))
print('std	dev	before	and	after:',	np.std(data),	np.std(centred))						

1
2
3
4
5

This is a string that is put in a specific place in the function definition, and it has special properties that
are useful.
To add a docstring to our centre() function, we add a string immediately after the function declaration
Demo code

This documents the function directly in the source code, and it also hooks that documentation into
Python 's help system.

We can ask for help on any function using the help() function:

Using the triple quotes (""") allows us to use a multi-line string to describe the function:

SLIDE DEFAULT ARGUMENTS

So far we have named the two arguments in our centre() function
We need to specify both of them when we call the function
Demo code

We can set a default value for function arguments when we define the function, by assigning a value in
the function declaration, as follows:

The change we've made is to set desired=0.0 in the function prototype.
Now, by default, the function will recentre the passed data to zero, without us having to specify that:

def	centre(data,	desired):
				"""Returns	the	array	in	data,	recentered	around	the	desired	value."""
				return	(data	-	numpy.mean(data))	+	desired

1
2
3

help(centre)1

def	centre(data,	desired):
				"""Returns	the	array	in	data,	recentered	around	the	desired	value.
				
				Example:	centre([1,	2,	3],	0)	=>	[-1,	0,	1]
				"""
				return	(data	-	np.mean(data))	+	desired

1
2
3
4
5
6

centre([1,	2,	3],	0)1

def	centre(data,	desired=0.0):
				"""Returns	the	array	in	data,	recentered	around	the	desired	value.
				
				Example:	centre([1,	2,	3],	0)	=>	[-1,	0,	1]
				"""
				return	(data	-	np.mean(data))	+	desired

1
2
3
4
5
6

centre([1,	2,	3])1

SLIDE EXERCISE 03

SLIDE ERRORS AND EXCEPTIONS

SLIDE CREATE A NEW NOTEBOOK

SLIDE ERRORS

Programming is essentially just making errors over and over again until the code works ;)
The key skill is learning how to identify, and then fix, the errors when they are reported.
All programmers make errors.

SLIDE TRACEBACK

Python tries to be helpful, and provides extensive information about errors
These are called tracebacks
We'll induce one, so we can look at it
Demo code

SLIDE PARTS OF A TRACEBACK

Talk through the traceback on the notebook
The stack of all steps leading to the error is shown
The steps are separated by lines starting <ipython-input-1…

The steps run in order from top to bottom
The first step has an arrow, showing where we were when the error happened. We were calling the

def	rescale(data):
				"""Returns	input	array	rescaled	to	[0.0,	0.1]."""
				l	=	np.min(data)
				h	=	np.max(data)
				return	(data	-	L)	/	(H	-	L)

1
2
3
4
5

def	favourite_ice_cream():
				ice_creams	=	[
								"chocolate",
								"vanilla",
								"strawberry"
]
				print(ice_creams[3])

favourite_ice_cream()

1
2
3
4
5
6
7
8
9

favourite_ice_cream() function
The second step tells us that we were in the favourite_ice_cream() function
The second step also points to the line print(ice_creams[3]) , which is where the error occurs
The second step is the last step, and the precise error is shown on the final line:
IndexError: list index out of range

Together, this tells us that we have made an index error in the line print(ice_creams[3]) , and
by looking we can see that we've tried to use an index outside the length of the list.

SLIDE SYNTAX ERRORS

The error you saw just now was a logic error - the code was valid Python , but it did something
'illegal'
Syntax errors occur when the code is not interpretable as valid Python

Demo code

SLIDE SYNTAX TRACEBACK

Python tells us there's a SyntaxError - the code isn't written correctly
It points to the approximate location of the problem with a caret/hat (^)
We can see that we need to put a colon at the end of the function declaration
Fix the code

SLIDE FIXED?

Show fixed code
Demo code

SLIDE NOT QUITE

Python now tells us that there's an IndentationError

We don't learn about all the syntax errors at one time - Python gives up after the first one it finds
(fixing the first error in a file might correct all subsequent errors)

def	some_function()
				msg	=	"hello,	world!"
				print(msg)
					return	msg

1
2
3
4

def	some_function():
				msg	=	"hello,	world!"
				print(msg)
					return	msg

1
2
3
4

SLIDE NAME ERRORS

If you try to use a variable that is not defined in scope, you will get a NameError

This often happens with typos
Demo code

This is true in functions/loops, too

SLIDE INDEX ERRORS

If you try to access an element of a collection that does not exist, you'll get an IndexError

print(a)

NameError																																	Traceback	(most	recent	call	last)
<ipython-input-5-c5a4f3535135>	in	<module>()
---->	1	print(a)

NameError:	name	'a'	is	not	defined

1
2
3
4
5
6
7
8

for	i	in	range(3):
				count	=	count	+	i

NameError																																	Traceback	(most	recent	call	last)
<ipython-input-6-15ebe951e74d>	in	<module>()
						1	for	i	in	range(3):
---->	2					count	=	count	+	i

NameError:	name	'count'	is	not	defined

1
2
3
4
5
6
7
8
9
10

SLIDE EXERCISE 04

SLIDE DEFENSIVE PROGRAMMING

SLIDE CREATE A NEW NOTEBOOK

SLIDE DEFENSIVE PROGRAMMING

So far we have focused on the basic tools of writing a program: variables, lists, loops, conditionals, and
functions.
We haven't looked very much at whether a program is getting the right answer (and whether it
continues to get the right answer as we change it).
It's all very well having some code, but if it doesn't give the right answer it can be damaging, or
useless
Defensive programming is the practice of expecting your code to have mistakes, and guarding
against them.

letters	=	['a',	'b',	'c']
print("Letter	#1	is",	letters[0])
print("Letter	#2	is",	letters[1])
print("Letter	#3	is",	letters[2])
print("Letter	#4	is",	letters[3])

Letter	#1	is	a
Letter	#2	is	b
Letter	#3	is	c

IndexError																																Traceback	(most	recent	call	last)
<ipython-input-7-656a22fa6ec5>	in	<module>()
						3	print("Letter	#2	is",	letters[1])
						4	print("Letter	#3	is",	letters[2])
---->	5	print("Letter	#4	is",	letters[3])

IndexError:	list	index	out	of	range

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

message	=	""
for	number	in	range(10):
				#	use	a	if	the	number	is	a	multiple	of	3,	otherwise	use	b
				if	(number	%	3)	==	0:
								message	=	message	+	"a"
				else:
								message	=	message	+	"b"
print(message)

1
2
3
4
5
6
7
8

To do this, we will write some code that checks its own operation.
This is generally good practice, that speeds up software development and helps ensure that your code
is doing what you intend.

SLIDE ASSERTIONS

Assertions are a Pythonic way to see if code runs correctly

80-90% of the Firefox source code is assertions!

We assert that a condition is True

If it's True , the code may be correct
If it's False , the code is not correct

The syntax for an assertion is that we assert some <condition> is True , and if it's not, an
error is thrown (AssertionError), with some text explaining the problem.

SLIDE EXAMPLE ASSERTION

Type code then ask learners what it does

Demo code

The traceback tells us which assertion failed.

assert	<condition>,	"Some	text	describing	the	problem"1

numbers	=	[1.5,	2.3,	0.7,	-0.001,	4.4]
total	=	0.0
for	n	in	numbers:
				assert	n	>	0.0,	'Data	should	only	contain	positive	values'
				total	+=	n
print('total	is:',	total)

1
2
3
4
5
6

AssertionError																												Traceback	(most	recent	call	last)
<ipython-input-1-985f50018947>	in	<module>()
						2	total	=	0.0
						3	for	n	in	numbers:
---->	4					assert	n	>	0.0,	'Data	should	only	contain	positive	values'
						5					total	+=	n
						6	print('total	is:',	total)

AssertionError:	Data	should	only	contain	positive	values

1
2
3
4
5
6
7
8
9
10

