
These notes are a guide to the speaker, as they present the material.

Test your Jupyter installation and make sure you can connect to the kernel.

SLIDE Building Programs With Python (1)

SLIDE INTRODUCTION

SLIDE WHY ARE WE HERE?

We're here to learn how to program
This is a way to solve problems in your research through making a computer do work quickly and
accurately
You'll build functions that do specific, defined tasks
You'll automate those functions to perform tasks over and over again (in various combinations)
You'll manipulate data, which is at the heart of all academia
You'll learn some file input/output to make the computer read and write useful information
You'll learn some Data structures, which are ways to organise data so that the computer can deal
with it efficiently

SLIDE XKCD

This cartoon is a little flippant, but only a bit
The principles of a programming language like Perl are universal
Many concepts are universal across programming languages
Learning one programming language will speed up the process of learning others
Q: HOW MANY PEOPLE HERE HAVE EXPERIENCE OF AT LEAST ONE PROGRAMMING
LANGUAGE?
What the more experienced here encounter should be recognisable to them

LESSON 01 - Building Programs With Python

Before you start

Slides

SLIDE HOW ARE WE DOING THIS?

We'll be learning how to program using Python
Why Python?
We need to use some language
Python is free, with good documentation and lots of books and online courses.
Python is widely-used in academia, and there's lots of support online
It can be easier for novices to pick up than other languages
We won't be covering the entire language in detail
We will be using some long-handed ways of doing things to keep them clear for novices

SLIDE NO, I MEAN "HOW ARE WE DOING THIS?"

We'll use two tools to write Python
The bulk of the course will be in the Jupyter notebook
Jupyter is good for exploring data, prototyping code, data-wrangling, and teaching

However, it's not so good for writing "production code" in a general sense
So, we'll also spend a little bit of time writing code in a text editor
Text editors are part of the edit-save-execute cycle, which is how much code is written
There are also specialist integrated development environments (IDEs) for Python that are
extremely useful for developers, but we'll not be using them

SLIDE DO I NEED TO USE PYTHON AFTERWARDS?

No.
The lesson and principles are general, we're just teaching in Python
What you learn here will be relevant in other languages
If your field or colleagues use another language in preference, there may be very good reasons for
that, and they may be able to offer detailed, relevant support and help to you in that language.
This is valuable.
Language Wars waste everyone's time.

SLIDE WHAT ARE WE DOING?

We're using a motivating example of data analysis
We've got some data relating to a new treatment for arthritis, and we're going to explore it.
Data represents patients and daily measurements of inflammation
We're going to analyse the data
We're going to visualise the data
We're going to get the computer to do this for us
Automation is key: fewer human mistakes, easier to apply to other future datasets, and share with

others (transparency)
We can also share our code and results via sites such as GitHub and BitBucket (supplementary
information, impact)

SLIDE SETUP

AT THIS POINT, PUT THE TERMINAL ON-SCREEN IN A SINGLE PROJECTOR SETUP, AND MOVE
THE SLIDES TO THE DESKTOP

SLIDE SETTING UP - 1 - DEMO

We want a neat (clean) working environment: always a good idea when starting a new project - it
helps for when you might want to use git to put it under version control, later.
Change directory to desktop (in terminal or Explorer)
Create directory python-novice-inflammation

Change your working directory to that directory

SLIDE SETTING UP - 2 - DEMO

We need to download our data (and also a little code that can help us)
Go to Etherpad in browser http://pad.software-carpentry.org/2017-05-18-standrews
Point out file links http://swcarpentry.github.io/python-novice-inflammation/data/python-novice-
inflammation-data.zip
Click on file links to download
Move files to python-novice-inflammation directory
Extract files - this will create a subdirectory called data in that folder
CHECK WHETHER EVERYONE HAS EXTRACTED THE DATA

SLIDE GETTING STARTED

SLIDE STARTING JUPYTER DEMO

Make sure you're in the project directory python-novice-inflammation

cd	~/Desktop
mkdir	python-novice-inflammation
cd	python-novice-inflammation

http://pad.software-carpentry.org/2017-05-18-standrews
http://swcarpentry.github.io/python-novice-inflammation/data/python-novice-inflammation-data.zip

Start Jupyter from the command-line
CHECK WHETHER EVERYONE SEES A WORKING JUPYTER NOTEBOOK

SLIDE JUPYTER LANDING PAGE DEMO

Jupyter landing page is a file browser, like Explorer/Finder
Point out Python (.py) files, .zip files, and directories)
Point out directory (data), and how the file symbols are different. (the triangle by the check box
gives a key)
Point out New button.

SLIDE CREATE A NEW NOTEBOOK DEMO

Click on New -> Python 3

Point out that there may or may not be other options in the student's installation
Indicate the new features on the empty notebook:

The notebook name: Untitled

Checkpoint information (the last time the notebook was saved, for safety)
The menu bar (File Edit etc.) - just like Word or Excel

An indication of which kernel you're using/language you're in
Icon view (just like Word or Excel)
An empty cell with In []:

Point out the box around the cell, and that it changes colour when you start to edit

SLIDE MY FIRST NOTEBOOK DEMO

Give the notebook the name variables

Click on Untitled and enter the name variables

SLIDE CELL TYPES DEMO

Jupyter documents are comprised of cells

A cell can be one of several types - we'll focus on two:

jupyter	notebook

Code : code in the current kernel/language
Markdown : text, with the opportunity for formatting

Change the first cell type to Markdown

The box colour changes from green to blue
The In [] prompt disappears

SLIDE MARKDOWN TEXT DEMO

Markdown lets us enter formatted text

Headers are preceded by a hash: #

The level of header is determined by the number of hashes: #

Typewriter text/code is shown by enclosing in backticks: ```
Italics are shown by enclosing text in single asterisks: *italic*

LaTeX can be entered within dollar signs $

Press Shift + Enter to execute a cell
The cell is rendered, and a new cell appears beneath the executed cell

SLIDE ENTERING CODE DEMO

Mathematical statements can be entered directly into a code cell

ENTER 1+2

Before the cell is executed, note that the In [] prompt has no value in it
Note that the code is colour syntax-highlighted

EXECUTE THE CELL Shift + Enter

Note that after execution, the In [] prompt now has a number in it to indicate the order in
which cells were executed
Note also that because there is no place to put the output, a value has been returned as
OUT [1] , showing the result of the calculation

#	Variables	in	Python

##	Python	as	a	calculator

We	can	use	`Python`	as	a	calculator	by	typing	mathematical	statements
into	a	code	cell,	and	*executing*	that	cell	by	pressing	`Shift	+	Enter`.

We	will	enter	the	statement	$1	+	2$	to	see	the	result.

A new code cell is created beneath the executed cell.

SLIDE EXERCISE 01

PUT THE EXERCISE SLIDE ON SCREEN
Ask the learners to try some calculator calculations, and demo some of your own

WHEN FINISHED, GO BACK TO THE NOTEBOOK AND PUT THE SLIDES ON THE DESKTOP

SLIDE MY FIRST VARIABLE

TYPE THE MARKDOWN IN A CELL AND EXECUTE

This is to keep the notebook as an example of literate programming (and a handy reference for
the students)

Use a real-life example to hand if possible
You can think of a variable as a labelled box, containing a data item

Here, we have a box labelled Name - this is the variable name
We've put the value Samia into the box

2	**	4
48	/	2	*	(9	+	3)		#	AMBIGUOUS!
48	/	(2	*	(9	+	3))
(48	/	2)	*	(9	+	3)
1e3	+	1e4
6	%	2
7	/	2
7	%	2

##	Variables

*	Variables	are	like	*named	boxes*
*	An	item	of	data	goes	into	the	box
*	When	we	refer	to	the	box/variable	name,	we	get	the	contents	of	the	box

SLIDE CREATING A VARIABLE

LET'S DO THIS FOR REAL IN PYTHON - follow on from the physical example if possible

To assign a value we use the equals sign
The variable name/box label goes on the left, and the data item goes on the right
Character strings, or strings, are enclosed in quotes
Executing the cell assigns the variable

So now, if we refer to the variable Name , we get the value that's in the box: Samia

SLIDE INSPECTING A VARIABLE

The print() function shows contents of a variable
We refer to the name of the variable, and get its contents

SLIDE WORKING WITH VARIABLES

Lead the students through the code:

Note, we're assigning an integer now (no quotes), but assignment is the same for all data items

Print weight_kg to see its value

Variables can be substituted by name wherever a value would go, in calculations for example

People may ask about floating point representations here - an introduction is at

name	=	"Samia"

print(name)

weight_kg	=	55
print(weight_kg)

2.2	*	weight_kg

https://docs.python.org/3/tutorial/floatingpoint.html - put this on the Etherpad.

The print() function will take more than one argument, separated by commas, and print
them

Reassigning to the same variable overwrites the old value

Changing the value of one variable does not automatically change the values of other defined
variables

Although we changed the value in weight_kg , weight_lb did not change when we did so

SLIDE EXERCISE 02 (5MIN)

PUT THE EXERCISE SLIDE ON SCREEN MCQ: put up four colours of sticky notes

The solution is 2

SLIDE EXERCISE 03 (5MIN)

MCQ: put up four colours of sticky notes

The code prints Hopper Grace

WHEN FINISHED, GO BACK TO THE NOTEBOOK AND PUT THE SLIDES ON THE DESKTOP

SLIDE DATA ANALYSIS

SLIDE START A NEW NOTEBOOK

print("weight	in	pounds",	2.2	*	weight_kg)

weight_kg	=	57.5
print("weight	in	kilograms	is	now:",	weight_kg)

print(weight_kg)
weight_lb	=	2.2	*	weight_kg
print('weight	in	kilograms:',	weight_kg,	'and	in	pounds:',	weight_lb)
weight_kg	=	100
print('weight	in	kilograms:',	weight_kg,	'and	in	pounds:',	weight_lb)

https://docs.python.org/3/tutorial/floatingpoint.html

Create a new notebook, and give it the name analysis

For this, you can introduce File -> New Notebook -> Python 3 as a way to create a new
notebook

SLIDE EXAMINE THE DATA

SHOW THE TERMINAL ON SCREEN
Use the terminal (head from this morning)

Describe the data: plain text, csv format

One row per patient
One column per day
Values separated by commas

State that we'll use the numpy library to work with this in Python

SLIDE PYTHON LIBRARIES

Most programming languages have libraries (or modules, or packages).
Libraries contain code that's not in the main language but is useful for something specific - they
can define functions, data types, and whole programs
Libraries add specific functionality to the language - you import as many as you neeed
Python has libraries for many types of work and operations

In Python , we call on libraries with the import statement, when we need them
Importing a library is like getting a new piece of equipment out of the locker and onto the lab bench
Import and describe libraries

numpy is a library that provides functions and pethods to work with arrays and matrices, such as
those in your dataset

#	Data	analysis

This	notebook	introduces	the	use	of	`Jupyter`	and	`Python`	for	data	analysis

head	data/inflammation-01.csv

import	numpy

SLIDE LOAD DATA

The numpy library gives us a function called loadtxt() that loads tabular data from a file
To use a function from a library , the format is usually library.function() : *dotted
notation*
loadtxt() expects two arguments or *parameters* - values it needs to know to work

The parameter fname takes the path to the file we want to load
The parameter delimiter takes the character that we think separates columns in that file

NOTE: This can be a good place to introduce tab-completion!
Here, our function is numpy.loadtxt() , and Dotted notation tells us that loadtxt() belongs
to numpy

Python will accept double- or single-quotes around strings
EXECUTE THE CELL

SLIDE LOADED DATA

We didn't ask Python to do anything with the data, so it it just shows the data to us.
The data display is truncated by default - ellipses (...) show rows and columns that were excluded
for space
Significant digits are not shown
NOTE that integers in the file have been converted to floating point numbers
Ask the learners to assign the matrix to a variable called data : MAKE THIS CHANGE IN-
PLACE

Now when we execute the cell we see no output, but data now contains the array, which we can
see by printing the variable

SLIDE WHAT IS OUR DATA? LIVE DEMO

We've loaded some data, but what is it?

Python sees our data as a special type : numpy.ndarray

##	Load	data

Load	comma-separated	data	from	a	file

numpy.loadtxt(fname='data/inflammation-01.csv',	delimiter=',')

data	=	numpy.loadtxt(fname="data/inflammation-01.csv",	delimiter=",")

print(data)

type(data)

From dotted notation we see that ndarray belongs to (was defined in) the numpy library
ndarray stands for "n-dimensional array" - so this is an n-dimensional array from the numpy

library

SLIDE MEMBERS AND ATTRIBUTES

Creating our data array created a lot of information, too
We created information about the array called attributes
This information belongs to data so is accessed in the same way as a module function, through
dotted notation

print(data.dtype) tells us that the data type for values in the array is: 64-bit floating point
numbers
print(data.shape) tells us that there are 60 rows and 40 columns in the dataset

SLIDE INDEXING ARRAYS

Take learners through making notes in the notebook: fence blocks

To get a single element from the array, index using square bracket notation - row first, then column

Execute the cell
In Python we index from zero, so the first element is data[0, 0]

SLIDE SLICING ARRAYS

Take learners through making notes in the notebook

print(data.dtype)
print(data.shape)

#	Indexing	arrays

Arrays	are	indexed	by	*row*	and	*column*,	using	*square	bracket*	notation:

data[30,	20]	#	get	entry	at	row	30,	column	20	of	the	array

print('first	value	in	data:',	data[0,	0])
print('middle	value	in	data:',	data[30,	20])

To get a section from the array, index using square bracket notation - but specify start and end points,
separated by a colon
The slice 0:4 means start at index zero and go up to, but not including, index 4. So it takes
elements 0, 1, 2, 3 (four elements)
Do the two print() examples

SLIDE MORE SLICES, PLEASE!

If we don't specify a start for the slice, Python assumes the first element is meant (element zero)
If we don't specify an end for the slice, Python assumes the last element is meant
To get the top-right corner of the array, we can specify data[:3, 36:]

Demo the code

QUESTION: What does : on its own mean?

SLIDE EXERCISE 04

PUT THE EXERCISE SLIDE ON SCREEN MCQ: put up four colours of sticky notes

The value is oxyg , number 1

WHEN FINISHED, GO BACK TO THE NOTEBOOK AND PUT THE SLIDES ON THE DESKTOP

##	Slicing	arrays

We	select	sections	of	an	array	by	*slicing*	it	-	defining	the	start	and	end	points	of	the	*slice

The	*slice*	`0:4`	means	"start	at	index	0	and	go	up	to,	but	not	including,	index	4"

print(data[0:4,	0:10])
print(data[5:10,	0:10])
print(data[2:4,	2:4])

small	=	data[:3,	36:]
print('small	is:')
print(small)

print(data[0:2,	:])

SLIDE ARRAY OPERATIONS

Arithmetic operations on array s are performed elementwise.

This operation multiplies every array element by 2.0.
Look at the top right corner of the original array

Look at the top right corner of the doubled array

SLIDE NUMPY FUNCTIONS

numpy provides functions that can perform more complex operations on arrays
Some of the numpy operations include statistical summaries: .mean() , .min() ,
.max() etc.

We can asssign the output from these functions to variables
By default, these functions give summaries of the whole array

SLIDE SUMMARY BY PATIENT

What if we want to get summaries patient-by-patient (row-by-row)?

##	Array	operations

Arithmetic	operations	on	arrays	are	performed	*elementwise*

The	`numpy`	package	provides	functions	that	perform	more	complex	operations	on	arrays.

doubledata	=	data	*	2.0

print('original:')
print(data[:3,	36:])

print('doubledata:')
print(doubledata[:3,	36:])

print(numpy.mean(data))

maxval,	minval,	stdval	=	numpy.max(data),	numpy.min(data),	numpy.std(data)
print('maximum	inflammation:',	maxval)
print('minimum	inflammation:',	minval)
print('standard	deviation:',	stdval)

We can extract a single row into a variable, and calculate the mean

NOTE: that comments are preceded with a hash # and can be placed after a line of code
EXPLAIN: why leaving comments is good (can do that in all code - not just Jupyter
notebooks)

We can also apply the numpy function directly, without creating a variable

SLIDE SUMMARY OF ALL PATIENTS

But what if we want to know about all patients at once?
Or what if we want an average inflammation per day?
Writing one line per row, or per column, is likely to lead to mistakes and typos
We can specify which axis a function applies to

MOVE SLIDE TO SCREEN TO DEMONSTRATE AXES 0 AND 1

Specifying axis=0 makes the function work on columns (days)

Specifying axis=1 makes the function work on rows (patients)

RETURN NOTEBOOK TO SCREEN

SLIDE NUMPY OPERATIONS ON AXES

numpy functions take an axis= parameter which controls the axis for summary statistic
calculations.

SLIDE VISUALISATION

patient_0	=	data[0,	:]	#	Row	zero	only,	all	columns
print('maximum	inflammation	for	patient	0:',	patient_0.max())

print('maximum	inflammation	for	patient	0:',	numpy.max(data[0,	:]))
print('maximum	inflammation	for	patient	2:',	numpy.max(data[2,	:]))

print(numpy.max(data,	axis=1))		#	max	value	for	each	patient
print(numpy.mean(data,	axis=0))	#	mean	value	on	each	day

SLIDE VISUALISATION

Start a new markdown notebook

Visualisation is a large topic that deserves more attention

SLIDE JUPYTER MAGIC

Jupyter provides another way to control libraries, through *magics*
matplotlib is the de facto standard plotting library in Python

Do the matplotlib magic
Note that warnings about fonts may be normal.

Import numpy and seaborn

seaborn is a library that enables attractive graphs and statistical summaries

SLIDE Load data

We want to visualise our data, and so we need to load it into a variable in the notebook again
Load the data again

SLIDE MATPLOTLIB .IMSHOW()

The .imshow() function converts matrix values into an image

Here, small values are white, and large values are black (you can change this colour scheme with
other settings…)
From the image, we can see inflammation rising and falling over a 40-day period for all patients.
QUESTION: does this look reasonable?

#	Visualisation

>	"The	purpose	of	computing	is	insight,	not	numbers"	-	Richard	Hamming

The	best	way	to	gain	insight	is	often	to	visualise	data.

%matplotlib	inline
import	matplotlib.pyplot

import	numpy
import	seaborn

data	=	numpy.loadtxt(fname='data/inflammation-01.csv',	delimiter=',')

image	=	matplotlib.pyplot.imshow(data)

SLIDE MATPLOTLIB .PLOT()

.plot() shows a conventional line graph
We're going to use it to plot the average inflammation level on each day of the study
We'll create the variable ave_inflammation and use numpy.mean() on axis 0 of the data

NOTE: ask students if the data looks reasonable?
The data does not look reasonable. Biologically, we expect a sharp rise in inflammation, followed by
a slow tail-off

SLIDE INVESTIGATING DATA

Since our plot of .mean() values looks artificial, let's check on other statistics to see if we can
see what's going on.
We'll plot the maximum value by day

NOTE we're not defining a variable, this time

Ask students if the data looks reasonable?
The data looks very artificial. The maxima are completely smooth, but the minima are a step function.
NOTE: we would not have noticed this without visualisation

SLIDE EXERCISE 05

PUT THE EXERCISE SLIDE ON SCREEN

WHEN FINISHED, GO BACK TO THE NOTEBOOK AND PUT THE SLIDES ON THE DESKTOP

SLIDE FIGURES AND SUBPLOTS

ave_inflammation	=	numpy.mean(data,	axis=0)
ave_plot	=	matplotlib.pyplot.plot(ave_inflammation)

max_plot	=	matplotlib.pyplot.plot(numpy.max(data,	axis=0))

min_plot	=	matplotlib.pyplot.plot(numpy.min(data,	axis=0))

std_plot	=	matplotlib.pyplot.plot(numpy.std(data,	axis=0))

THE CODE ALL NEEDS TO GO IN ONE CELL, BUT WE CAN EXECUTE AFTER EACH SECTION
TO SHOW BUILD-UP
We can put all three plots we just drew into a single figure
To do this, we use matplotlib to create a figure, and put it in a variable called fig

The figsize argument specifies the width, then the height of the figure being produced, in inches
We then create three *axes* - these are the variables that hold the individual plots
Using the .add_subplot() function, we need to specify three things:

number of rows, number of columns, which cell this figure goes into
THIS NEEDS TO BE DRAWN OUT ON THE BOARD

Once we've created our plot axes, we can add labels and plots to each of them in turn
Plot axes properties are usually changed using the .set_<something>() syntax

Here we're changing only the label on the y-axis

We can plot on an axis by using its .plot() function

As before, we can pass the output from the numpy.max() function directly

Finally, we'll tighten up the presentation by using fig.tight_layout() - a function that moves
the axes until they are visually pleasing.

This is the most demanding code you have written, so far! ROUND OF APPLAUSE FOR
YOURSELVES!

SLIDE EXERCISE 06

PUT THE EXERCISE SLIDE ON SCREEN

fig	=	matplotlib.pyplot.figure(figsize=(10.0,	3.0))		#	Create	a	figure	object

axes1	=	fig.add_subplot(1,	3,	1)																					#	Add	three	subplots
axes2	=	fig.add_subplot(1,	3,	2)
axes3	=	fig.add_subplot(1,	3,	3)

axes1.set_ylabel('average')																										#	Label	the	graphs
axes2.set_ylabel('max')
axes3.set_ylabel('min')

axes1.plot(numpy.mean(data,	axis=0))																	#	Plot	the	graphs
axes2.plot(numpy.max(data,	axis=0))
axes3.plot(numpy.min(data,	axis=0))

fig.tight_layout()																																			#	tidy	the	figure

Note that it helps to change figsize

Otherwise the only change is in add_subplot()

WHEN FINISHED, GO BACK TO THE NOTEBOOK AND PUT THE SLIDES ON THE DESKTOP

NOW, TO DO MORE INTERESTING THINGS, WE NEED TO LEARN A LITTLE MORE ABOUT
PROGRAMMING

SLIDE LOOPS

SLIDE START A NEW NOTEBOOK

Create a new notebook, and give it the name loops

SLIDE MOTIVATION

We wrote code that plots values of interest from our dataset
BUT soon we're going to get dozens of datasets to analyse
So, we need to tell the computer to repeat our plots and analysis on each dataset
We're going to do this with for loops
NOTE: for loops are a fundamental method for program control across nearly every
programming language
NOTE: for loops in python work just like those the learners saw in bash , but are

fig	=	matplotlib.pyplot.figure(figsize=(3.0,	10.0))		#	Create	a	figure	object
axes1	=	fig.add_subplot(3,	1,	1)																					#	Add	three	subplots
axes2	=	fig.add_subplot(3,	1,	2)
axes3	=	fig.add_subplot(3,	1,	3)
axes1.set_ylabel('average')																										#	Label	and	plot	the	graphs
axes1.plot(numpy.mean(data,	axis=0))
axes2.set_ylabel('max')
axes2.plot(numpy.max(data,	axis=0))
axes3.set_ylabel('min')
axes3.plot(numpy.min(data,	axis=0))
fig.tight_layout()																																			#	tidy	the	figure

##	Loops

Loops	allow	us	to	repeat	operations	on	a	series	of	items.

syntactically different

SLIDE SPELLING BEE

If we want to spell a word, like 'lead' one letter at a time

We can index each letter in turn (just like elements of an array)

But this has some problems - ASK LEARNERS WHAT PROBLEMS THEY SEE
The approach doesn't scale - what if our word is hundreds of letters long?
What if our word is longer than the indices? We don't get all the data; if it's shorter, we get an error.
demonstrate with oxygen and tin - MODIFY THE WORD IN PLACE

SLIDE FOR LOOPS

for loops perform an operation for every item in a collection
REPLACE THE INDEXING AND DEMO FOR oxygen , lead , and tin

Why is this better? ASK THE LEARNERS
It's shorter code (less opportunity for error)
It's more flexible and robust - it doesn't matter how long word is, the code will still spell it out one
letter at a time

SLIDE BUILDING FOR LOOPS

The general loop syntax is defined by a for statement, and a code block

The for loop statement ends in a colon, :

The code block is indented with a tab (\t)

word	=	"lead"

print(word[0])
print(word[1])
print(word[2])
print(word[3])

for	char	in	word:
				print(char)

The	general	loop	syntax	is

for	element	in	collection:
				<do	something	with	element>

Everything indented immediately below the for statement is part of the for loop
There is no command or statement to signify the end of the loop body - only a change in
indentation
This is quite different from most other languages (and some people hate Python because of it)

DEMO THE CODE BELOW

SLIDE COUNTING THINGS

Code in a for loop can still see variables defined outside the loop
PUT THE CODE INTO A CELL:

Ask the learners what output they expect
Talk through the operations of the loop, if necessary

SLIDE LOOP VARIABLES

The loop variable alsp still exists once the loop is finished
PUT CODE IN A CELL

ASK THE LEARNERS WHAT OUTPUT THEY EXPECT
The value of letter is c , the last updated value in the loop - not z , which would be the case if
the loop variable only had scope within the loop

SLIDE RANGE()

for	char	in	word:
				print(char)
				print("I'm	in	the	loop")
				#	This	is	a	comment
				print("Still	in	the	loop")
				
				print("I'm	in	the	loop	as	well")
print("Not	in	the	loop")

length	=	0
for	vowel	in	'aeiou':
				length	=	length	+	1
print('There	are',	length,	'vowels')

letter	=	'z'
print(letter)
for	letter	in	'abc':
				print(letter)
print('after	the	loop,	letter	is',	letter)

Make a markdown cell

The range() function creates a sequence of numbers.
The sequence depends on the number and value of arguments given
RUN DEMO CODE BELOW

Substitute other ranges and run again

A single value n gives the sequence [0, ..., n-1]

Two values: m, n gives the sequence [m, ..., n-1]

Three values: m, n, p gives the sequence [m, m+p, ..., n-1] and skips n-1 if it's not in the
sequence.
NOTE: range() returns a range type that can be iterated over.

SLIDE EXERCISE 07

PUT THE EXERCISE SLIDE ON SCREEN

SLIDE EXERCISE 08

WHEN FINISHED, GO BACK TO THE NOTEBOOK AND PUT THE SLIDES ON THE DESKTOP

##	`range()`

The	`range()`	function	creates	a	sequence	of	numbers

seq	=	range(3)
print("Range	is:",	seq)
for	val	in	seq:
				print(val)

seq	=	range(3)
seq	=	range(2,	5)
seq	=	range(3,	10,	3)
seq	=	range(10,	0,	-1)

result	=	1
for	val	in	range(3):
				result	=	result	*	5
print(result)

instr	=	"Newton"
outstr	=	""
for	char	in	instr:
				outstr	=		char	+	outstr
print(outstr)

SLIDE enumerate()

DEMO CODE BELOW

We can solve this with a little Python

SLIDE LISTS

SLIDE START A NEW NOTEBOOK

##	`enumerate()`

The	`enumerate()`	function	creates	paired	indices	and	values	for	elements	of	a	sequence

seq	=	enumerate('aeiou')
print("Sequence	is:",	seq)
for	idx,	val	in	seq:
				print(idx,	val)
	```

----
**SLIDE**	USING	`enumerate()`

*	We	can	use	enumerate	to	index	lists	in	order,	which	can	be	very	useful	in	a	variety	of	circumstances
*	**PUT	THE	MARKDOWN	IN	THE	NOTEBOOK**

```markdown
Calculate	y	when	$x=5$	when	the	coefficients	are	`coeffs	=	[2,	4,	3,	2,	1]`:

$$y	=	a_0	+	a_1	x	+	a_2	x^2	+	a_3	x^3	+	a_4	x^4$$

x	=	5
coeffs	=	[2,	4,	3,	2,	1]

y	=	0
for	idx,	val	in	enumerate(coeffs):
				y	=	y	+	val	*	(x	**	idx)

print(y)

#	Lists

Lists	are	a	built-in	`Python`	datatype,	describing	ordered	collections	of	elements.

Lists	are	defined	by	comma-separated	values,	in	square	brackets.

SLIDE LISTS

Lists are defined as ordered lists of values, in square brackets, separated by commas

They can be indexed and sliced, as seen for arrays

They can be iterated over, in loops

SLIDE MUTABILITY

list s and string s are both sequences, BUT you can change the elements in a list, after it is
created: lists are mutable

We have a typo - let's correct it

string s are NOT mutable

SLIDE CHANGER DANGER

There are risks associated with modifying lists in-place
Rather than make copies of lists, when assigned to more than one variable, Python will make

odds	=	[1,	3,	5,	7]
print('odds	are:',	odds)

print('first	and	last:',	odds[0],	odds[-1])
print(odds[2:])

for	number	in	odds:
				print(number)

##	Mutability

`Python`	has	a	concept	of	mutability.	Items	that	can	be	changed	in-place	are	*mutable*.	Those	that	can't	are	

Lists	are	*mutable*,	strings	are	*immutable*.

names	=	['Newton',	'Darwing',	'Turing']	#	typo	in	Darwin's	name
print('names	is	originally:',	names)

names[1]	=	'Darwin'	#	correct	the	name
print('final	value	of	names:',	names)

name	=	'Darwin'
name[0]	=	'd'

reference to the original list
DEMO CODE

ASK LEARNERS WHAT THEY THINK your_list contains

If two variables refer to the same list, any changes to that list are reflected in both variables.

SLIDE LIST COPIES

To avoid this kind of effect, you can make a copy of a list by slicing it, or using the
list() function that returns a new list

**DEMO CODE - MODIFY THE CODE ABOVE IN-PLACE IN THE NOTEBOOK **

SLIDE NESTED LISTS

ADD MARKDOWN CELL

my_list	=	[1,	2,	3,	4]
your_list	=	my_list
print("my	list:",	my_list)
my_list[1]	=	0

print("your	list:",	your_list)

my_list	=	[1,	2,	3,	4]
your_list	=	my_list[:]
print("my	list:",	my_list)
print("your	list:",	your_list)
my_list[1]	=	0
print("my	list:",	my_list)
print("your	list:",	your_list)

my_list	=	[1,	2,	3,	4]
your_list	=	list(my_list)
print("my	list:",	my_list)
print("your	list:",	your_list)
my_list[1]	=	0
print("my	list:",	my_list)
print("your	list:",	your_list)

list s can contain any datatype, even other lists
Imagine we have a grocery store with three shelves, and the items on the shelves are arranged with
{pepper, zucchini, onion} on the top shelf, {cabbage, lettuce, garlic} on the middle shelf, and {apple,
pear, banana} on the lower shelf.
We can represent this in a *nested list*: one list per shelf, and a list that contains the three lists, to
represent the grocery store.
Demo code

NOTE: This should remind you of the numpy array you loaded earlier! Work through the code
below

SLIDE LIST FUNCTIONS

list s are Python objects and have a number of useful functions to modify their contents
.append() adds a value to the end of the list

.reverse() reverses the order of list items

.pop() returns the last item in the list, removing it from the list

SLIDE OVERLOADING

We can add (+) and multiply (*) lists, even though they're not really arithmetic operations
Overloading refers to an operator (e.g. +) having more than one meaning, depending on the thing it
operates on.

##	Nested	`list`s	and	`list`	functions

A	`list`	can	contain	any	other	datatype	-	even	another	`list`!

shelves	=	[['pepper',	'zucchini',	'onion'],
											['cabbage',	'lettuce',	'garlic'],
											['apple',	'pear',	'banana']]

print(shelves[0])
print([shelves[0]])
print(shelves[0][0])

odds.append(9)
print("odds	after	adding	a	value:",	odds)

odds.reverse()
print("odds	after	reversing:",	odds)

print(odds.pop())
print("odds	after	popping:",	odds)

NOTE: multiplication of lists does not work like multiplication of numpy arrays

Ask the learners what 'addition' (+) and 'multiplication' (*) do for lists

SLIDE MAKING CHOICES

SLIDE START A NEW NOTEBOOK

Call it choices

Add an introduction cell

Add the Python code to the markdown

SLIDE CONDITIONALS

We often want the computer to do <something> if some condition is true
To do this, we can use an if statement

if statements end in a colon (:)
they also have a *condition* - the condition is evaluated and, if found to be true , the code
block is executed
The code block is indented as was the case with the for loop

EXECUTE CODE

vowels	=	['a',	'e',	'i',	'o',	'u']
vowels_welsh	=	['a',	'e',	'i',	'o',	'u',	'w',	'y']
print(vowels	+	vowels_welsh)

counts	=	[2,	4,	6,	8,	10]
repeats	=	counts	*	2
print(repeats)

#	Making	Choices

We	often	want	to	make	the	computer	perform	one	task	if	some	condition	is	true,	but	a	different	task	if	that	condition	is	false.

if	<condition>:
		<executed	if	condition	is	True>

num	=	37
if	num	>	100:
				print('greater')
print('done')

CHANGE NUMBER TO VARIOUS VALUES IN THE SAME CELL

Any condition that might evaluate to True or False can be used:
SHOW A DIFFERENT TEST

SLIDE IF-ELSE STATEMENTS

An if statement executes code if the condition evaluates as true

But what if the condition evaluates as false ?
The else structure is like the if structure

it ends in a colon (:)
the indented code block beneath it executes if the condition is false

MAKE CHANGES AND EXECUTE CODE IN EXISTING CELLS

SLIDE CONDITIONAL LOGIC

OPTIONALLY SHOW THIS SLIDE

Describe flowchart

SLIDE IF-ELIF-ELSE CONDITIONALS

We can chain conditional tests together with elif (short for else if)
The elif statement structure is the same as the if statement structure

the indented code block is executed if the condition is true, and no previous conditions have

num	=	137
num	=	100

if	'atlas'	==	'atlas':
				print("the	same")

num	=	37
if	num	>	100:
				print('greater')
else:
				print('not	greater')
print('done')

if	'atlas'	==	'atlash':
				print("the	same")
else:
				print('different')

been met.

EXECUTE DEMO CODE IN EXISTING CELL

NOTE: the test for equality is a double-equals!

SLIDE COMBINING CONDITIONS

We can combine conditions using *Boolean Logic*
Operators include and , or and not

EXECUTE CODE IN NEW CELL

VARY THE CODE IN PLACE

SLIDE EXERCISE 09

PUT THE EXERCISE SLIDE ON SCREEN
MCQ: Put up four stickies

num	=	-3
if	num	>	0:
				print(num,	"is	positive")
elif	num	==	0:
				print(num,	"is	zero")
else:
				print(num,	"is	negative")

if	(1	>	0)	and	(-1	>	0):
				print('both	parts	are	true')
else:
				print('at	least	one	part	is	false')

if	(4	>	0)	and	(2	>	0):
				print('both	parts	are	true')
else:
				print('at	least	one	part	is	false')

if	(4	>	0)	or	(2	>	0):
				print('at	least	one	part	is	true')
else:
				print('both	parts	are	false')

Solution: C

WHEN FINISHED, GO BACK TO THE NOTEBOOK AND PUT THE SLIDES ON THE DESKTOP

SLIDE MORE OPERATORS

ADD THE MARKDOWN

These are two operators you will meet and use frequently
== (double-equals) is the equality operator, and returns True if the left-hand-side value is

equal to the right-hand-side value
DEMO CODE

in is the membership operator, and returns True if the left-hand-side value is in the right-hand-
side value
DEMO CODE

SLIDE ANALYSING MULTIPLE FILES

SLIDE START A NEW NOTEBOOK

Call it files

ADD NEW HEADER CELL

ADD IMPORTS

##	Operators

*	`==`	(equals)
*	`in`

print(1	==	1)
print(1	==	2)

print('a'	in	'toast')
print('b'	in	'toast')
print(1	in	[1,	2,	3])
print(1	in	range(3))
print(1	in	range(2,	10))

#	Analysing	Multiple	Files

We're	now	almost	ready	to	start	analysing	multiple	files	of	inflammation	data.

SLIDE ANALYSING MULTIPLE FILES

We have received several files of data from the inflammation studies, and we would like to perform
the same operations on each of them.
We have learned how to open files, read data, visualise data, loop over data, and make
decisions based on that content.
Now we need to know how to interact with the *filesystem* to get our data files.

SLIDE THE OS MODULE

New Markdown cell

To interact with the filesystem, we need to import the os module
This allows us to interact with the filesystem in the same way, regardless of the operating system we
work on! INTEROPERABILITY AND REPRODUCIBILITY
IMPORT THE MODULE

SLIDE OS.LISTDIR

The .listdir() function lists the contents of a directory

Our data is in the 'data' directory
Reuse the cell

We only want inflammation data so we would like to ignore the small files
We want to turn the list from os.listdir() into a list that contains only inflammation* files:
use for loop and if to filter
The list can be filtered with a for loop or list comprehension

%matplotlib	inline

import	matplotlib.pyplot
import	numpy
import	seaborn

##	The	`os`	module

Allows	us	to	interact	with	the	computer's	filesystem

import	os

os.listdir('.')

os.listdir('data')

We'd like to work with this set of files, so we store it in a variable, called files .
A suitable data type here is a list , and we can populate it one file at a time, using .append()

ADAPT THE EXISTING CELL

SLIDE OS.PATH.JOIN

The os.listdir() function only returns filenames, not the path (relative or absolute) to those
files.
WE NEED THE FULL PATH TO A FILE TO BE ABLE TO USE IT
To construct a path, we can use the os.path.join() function.
os.path.join() takes directory and file names, and returns a path built from them as a string,

suitable for the underlying operating system.
This is useful for making code shareable and usable on all OS/computers
EXAMPLE CODE IN NEW CELL

MODIFY PREVIOUS CELL TO GET

SLIDE VISUALISING THE DATA

Add markdown

Now we have all the tools we need to load all the inflammation data files, and visualise the mean,

for	file	in	os.listdir('data'):
				if	'inflammation'	in	file:
								print(file)

files	=	[]
for	file	in	os.listdir('data'):
				if	'inflammation'	in	file:
								files.append(file)
print(files)

os.path.join('parent',	'child',	'file.txt')
os.path.join('data',	'inflammation-01.csv')

files	=	[]
for	file	in	os.listdir('data'):
				if	'inflammation'	in	file:
								files.append(os.path.join('data',	file))
print(files)

##	Visualising	data

We	can	now	load	data	from	each	file	in	turn,	and	visualise	the	mean,	minimum	and	maximum	values	in	an	array	of	plots

minimum and maximum values in an array of plots.

We can get a list of paths to the data files with os and a list comprehension
We can load data from a file with numpy.loadtxt()

We can calculate summary statistics with numpy.mean() , numpy.max() , etc.
We can create figures with matplotlib , and arrays of figures with .add_subplot()

SLIDE VISUALISATION CODE

BUILD THE CODE IN STAGES

1 - show that we see each filename in turn python for file in files: print(file)

2 - show the data in each file

3 - create a figure for each file

4 - decorate the axes

for	file	in	files:
				print(file)
				
				#	load	data
				data	=	numpy.loadtxt(fname=file,	delimiter=',')
				print(data)

for	file	in	files:
				print(file)

				#	load	data
				data	=	numpy.loadtxt(fname=file,	delimiter=',')

				#	create	figure	and	axes
				fig	=	matplotlib.pyplot.figure(figsize=(10.0,	3.0))
				axes1	=	fig.add_subplot(1,	3,	1)
				axes2	=	fig.add_subplot(1,	3,	2)
				axes3	=	fig.add_subplot(1,	3,	3)

5 - plot the data

6 - tidy and show plot

for	file	in	files:
				print(file)

				#	load	data
				data	=	numpy.loadtxt(fname=file,	delimiter=',')

				#	create	figure	and	axes
				fig	=	matplotlib.pyplot.figure(figsize=(10.0,	3.0))
				axes1	=	fig.add_subplot(1,	3,	1)
				axes2	=	fig.add_subplot(1,	3,	2)
				axes3	=	fig.add_subplot(1,	3,	3)
				
				#	decorate	axes
				axes1.set_ylabel('average')
				axes2.set_ylabel('maximum')
				axes3.set_ylabel('minimum')

for	file	in	files:
				print(file)

				#	load	data
				data	=	numpy.loadtxt(fname=file,	delimiter=',')

				#	create	figure	and	axes
				fig	=	matplotlib.pyplot.figure(figsize=(10.0,	3.0))
				axes1	=	fig.add_subplot(1,	3,	1)
				axes2	=	fig.add_subplot(1,	3,	2)
				axes3	=	fig.add_subplot(1,	3,	3)
				
				#	decorate	axes
				axes1.set_ylabel('average')
				axes2.set_ylabel('maximum')
				axes3.set_ylabel('minimum')
				
				#	plot	data
				axes1.plot(numpy.mean(data,	axis=0))
				axes2.plot(numpy.max(data,	axis=0))
				axes3.plot(numpy.min(data,	axis=0))

Show the collapse/expand click option in the notebook

SLIDE CHECKING DATA

There are two suspicious features to some of the datasets

1. The maximum values rose and fell as straight lines
2. The minimum values are consistently zero

We'll use if statements to test for these conditions and give a warning

SLIDE TEST FOR SUSPICIOUS MAXIMA

Is day zero value 0, and day 20 value 20?
ADD TO EXISTING CODE BEFORE PLOT

for	file	in	files:
				print(file)

				#	load	data
				data	=	numpy.loadtxt(fname=file,	delimiter=',')

				#	create	figure	and	axes
				fig	=	matplotlib.pyplot.figure(figsize=(10.0,	3.0))
				axes1	=	fig.add_subplot(1,	3,	1)
				axes2	=	fig.add_subplot(1,	3,	2)
				axes3	=	fig.add_subplot(1,	3,	3)
				
				#	decorate	axes
				axes1.set_ylabel('average')
				axes2.set_ylabel('maximum')
				axes3.set_ylabel('minimum')
				
				#	plot	data
				axes1.plot(numpy.mean(data,	axis=0))
				axes2.plot(numpy.max(data,	axis=0))
				axes3.plot(numpy.min(data,	axis=0))
				
				#	tidy	and	show	the	plot
				fig.tight_layout()
				matplotlib.pyplot.show()

SLIDE SUSPICIOUS MINIMA

Are all the minima zero? (do they sum to zero?)
ADD TO EXISTING CODE BEFORE PLOT - AS ELIF

SLIDE BEING TIDY

If everything's OK, let's be reassuring
ADD TO EXISTING CODE BEFORE PLOT

SLIDE MAKING A SCRIPT

SLIDE RUN THE NOTEBOOK

Run the notebook: Kernel -> Restart & Run All

Interactive output appears in the notebook
Jupyter is good for this kind of work - prototyping, interactive, teaching

But it's not how most people write Python day-to-day
We'll use our notebook as the basis for a script

SLIDE DOWNLOAD PYTHON CODE

Download the notebook as a script: File -> Download As -> Python

It will download as files.py

PUT THE TERMINAL ON SCREEN

Move the file to your working directory
OPEN THE FILE WITH AN EDITOR

if	numpy.max(data,	axis=0)[0]	==	0	and	numpy.max(data,	axis=0)[20]	==	20:
				print('Suspicious	looking	maxima!')

elif	numpy.sum(numpy.min(data,	axis=0))	==	0:
				print('Minima	sum	to	zero!')

else:
				print('Seems	OK!')

files.py is a plain text file, containing Python code and comments, from your notebook
All the Markdown has been converted to comments
All the In[] and Out[] markers are also now comments

SLIDE RUN PYTHON CODE

In the editor

COMMENT OUT get_ipython().magic('matplotlib inline') magic

In the terminal

RUN python files.py

OUTPUT MAY DIFFER DEPENDING ON INDIVIDUALS' SETUPS - ASK WHAT THEY SEE

SLIDE Edit PYTHON CODE

Seeing each image in turn is not convenient
We'll write each image to file instead of viewing it
EDIT - SAVE - EXECUTE cycle

EDIT THE FILE AS SHOWN BELOW

The files are placed in the data directory

SLIDE CONCLUSIONS

PUT THE SLIDES ON SCREEN

SLIDE LEARNING OUTCOMES

Jupyter notebooks
variables
data types: arrays, lists, strings, numbers
file IO: loading data, listing files, manipulating filenames
calculating statistics
plotting data: plots and subplots
program flow: loops and conditionals

#	matplotlib.pyplot.show()
outfile	=	file	+	'.png'
print("Writing	PNG	to",	outfile)
matplotlib.pyplot.savefig(outfile)		

automating multiple analyses
Python scripts: edit-save-execute

SLIDE WELL DONE!

SEND THEM HOME HAPPY!

