
These notes are a guide to the speaker, as they present the material.

Test your Jupyter installation and make sure you can connect to the kernel.

SLIDE Building Programs With Python (1)

SLIDE INTRODUCTION

SLIDE WHY ARE WE HERE?

We're here to learn how to program
This is a way to solve problems in your research through making a computer do work quickly and
accurately
You'll build functions that do specific, defined tasks
You'll automate those functions to perform tasks over and over again (in various combinations)
You'll manipulate data, which is at the heart of all academia
You'll learn some file input/output to make the computer read and write useful information
You'll learn some Data structures, which are ways to organise data so that the computer can deal
with it efficiently

SLIDE XKCD

Again, this slide is only a little bit flippant
No-one writes perfect code, first time
It's all about revision, and good practice: defensive programming
This will make your life, and other people's lives, much easier

SLIDE WHAT ARE WE DOING?

We're using a motivating example of data analysis
We've got some data relating to a new treatment for arthritis, and we're going to explore it.

LESSON 02 - Building Programs With Python

Before you start

Slides

Data represents patients and daily measurements of inflammation
We're going to refactor our code from yesterday
We're going to document what the code does
We're going to catch errors in our code, and respond sensibly

SLIDE SETUP

SLIDE SETTING UP

We want a neat (clean) working environment
IF NECESSARY!
Change directory to desktop (in terminal or Explorer)
Change your working directory to python-novice-inflammation (from yesterday/earlier)

SLIDE STARTING JUPYTER DEMO

Start Jupyter from the command-line

SLIDE JUPYTER LANDING PAGE DEMO

Landing page is a file browser, like Explorer/Finder
MAKE SURE EVERYONE IS IN THE CORRECT LOCATION

SLIDE FUNCTIONS

SLIDE MOTIVATION

We wrote some code that plots values of interest from multiple datasets, but that code is long and
complicated
The code is also not very flexible if we want to deal with thousands of files, and we can't modify it to
plot only a subset of files very easily
Cutting and pasting is slow and error-prone
SO we will package our code for reuse.
We do this by writing functions

SLIDE WHAT IS A FUNCTION?

Functions in code work like mathematical functions, like y=f(x)

f() is the function
x is an input (or inputs)
y is the returned value, or output(s)

The function's output y depends in some way on the value of x - defined by f() .
Not all functions in code take an input, or produce a usable output, but the principle is
generally the same.
You've already been using functions in this course: print() , numpy.max() , etc.

SLIDE MY FIRST FUNCTION

TALK ABOUT THE FUNCTION AND ITS PARTS BEFORE CREATING IT
We'll write a function to convert Fahrenheit to Kelvin, called fahr_to_kelvin()

Describe the mathematical function:

This function takes x , subtracts 32, multiplies by 5/9, and adds 273.15

In Python this translates to the code below:

The function performs a calculation, which is returned by the return statement.
The value of the variable temp is taken through the same calculation as in the
mathematical function, and is then returned.
Functions are defined by the def keyword
The name of the function follows the def keyword (equivalent to f in the mathematical
example)
The first line ends in a colon, just like a for loop or if statement.
The code, or body of the function is indented, just like a for loop or if statement.
The parameters or inputs to the function are then defined in parentheses. These get a variable
name which only exists within the function. Here, there is one parameter, called temp .

SLIDE CREATE A NEW NOTEBOOK DEMO

PUT THE NOTEBOOK ON SCREEN

We'll create a new notebook to play with some functions

Call the notebook functions

Add a header

SLIDE CREATE THE FUNCTION

WRITE THE FUNCTION IN THE NOTEBOOK

SLIDE CALLING THE FUNCTION

We call fahr_to_kelvin in exactly the same way we call any other function we've seen so
far
e.g. print() or numpy.mean()

SLIDE CREATE A NEW FUNCTION

ASK THE LEARNERS HOW WE WOULD CREATE A NEW FUNCTION TO CONVERT KELVIN TO
CELSIUS
Walk through the process, being prompted

ASK THE LEARNERS HOW TO CALL THE FUNCTION

SLIDE COMPOSING FUNCTIONS

Composing Python functions works just like mathematical functions: y = f(g(x))

ASK HOW WE CAN CONVERT FAHRENHEIT TO CELSIUS WITH OUR EXISTING FUNCTIONS
We could convert a temperature in fahrenheit (temp_f) to a temperature in celsius (temp_c) by
executing the code:

#	Functions

Functions	are	pieces	of	code	that	take	an	input	and	return	an	output.	They	enable	us	to	break	our	code	into	logical	chunks	that	are	easier	to	understand	and	maintain.

1
2
3

print('freezing	point	of	water:',	fahr_to_kelvin(32))
print('boiling	point	of	water:',	fahr_to_kelvin(212))

1
2

def	kelvin_to_celsius(temp):
		return	temp	-	273.15

1
2

print('freezing	point	of	water',	kelvin_to_celsius(273.15))1

SLIDE NEW FUNCTIONS FROM OLD

**ASK LEARNERS HOW WE CAN TURN THIS INTO A NEW FUNCTION: fahr_to_celsius() :

We can call this just like any other function

THIS IS HOW PROGRAMS ARE BUILT: COMBINING SMALL CHUNKS OF CODE INTO LARGER
BITS UNTIL WE GET THE RESULT WE WANT

SLIDE EXERCISE 01

SHOW THE SLIDES FOR THE EXERCISE

RETURN TO THE NOTEBOOK

SLIDE SCOPE

Make a Markdown note

This is called *function scope*
DEMO THE CODE BELOW

temp_f	=	212.0
temp_c	=	kelvin_to_celsius(fahr_to_kelvin(temp_f))
print(temp_c)

1
2
3

def	fahr_to_celsius(temp_f):
				return	kelvin_to_celsius(fahr_to_kelvin(temp_f))

1
2

print('freezing	point	of	water	in	Celsius:',	fahr_to_celsius(32.0))1

def	outer(s)
				return	s[0]	+	s[-1]

1
2

##	Scope

Variables	defined	within	a	function	(including	parameters)	are	not	available	outside	the	function	unless	they	are	returned.

1
2
3

This code defines a variable a and gives it a value "Hello"
NOW DECLARE A FUNCTION (IN THE SAME CELL) AND CALL IT

To move values to and from functions, you should generally return them from the function
COMPLETE THE CODE EXAMPLE IN THE CELL

SLIDE EXERCISE 02

PUT THE SLIDES ON SCREEN
MCQ: put coloured stickies up

Solution: 1: 7 3 (this differs from that on the SWC page)

PUT THE NOTEBOOK BACK ON SCREEN WHEN DONE

SLIDE ANALYSIS

SLIDE TIDYING UP

a	=	"Hello"

print(a)

1
2
3

a	=	"Hello"

def	my_fn():
				a	=	"Goodbye"
				return	a

a	=	my_fn()
print(a)

1
2
3
4
5
6
7
8

a	=	"Hello"

def	my_fn(a):
		a	=	"Goodbye"
		
a	=	my_fn(a)
print(a)

1
2
3
4
5
6
7

Now we can write functions, let's make the inflammation analysis easier to reuse
ONE FUNCTION PER OPERATION
**OPEN UP THE FILES.IPYNB NOTEBOOK FROM YESTERDAY
RESTART AND RUN ALL CELLS
GUIDE THE STUDENTS THROUGH THE CODE LOGIC: TWO SECTIONS - ANALYSE AND
DETECT PROBLEMS

SLIDE ANALYSE()

We'll write a function that plots the data
WRITE THE FUNCTION BELOW IN THE SAME CELL, WITH COPY AND PASTE
SPLIT CELLS SO THAT THE FUNCTION AND LOOP ARE SEPARATE

RUN THE CELL AND SHOW THAT THE OUTPUT IS THE SAME

SLIDE DETECT_PROBLEMS()

We'll have a function that checks the data for problems
* Demo code

def	analyze(data):
				fig	=	matplotlib.pyplot.figure(figsize=(10.0,	3.0))

				axes1	=	fig.add_subplot(1,	3,	1)
				axes2	=	fig.add_subplot(1,	3,	2)
				axes3	=	fig.add_subplot(1,	3,	3)

				axes1.set_ylabel('average')
				axes1.plot(numpy.mean(data,	axis=0))

				axes2.set_ylabel('max')
				axes2.plot(numpy.max(data,	axis=0))

				axes3.set_ylabel('min')
				axes3.plot(numpy.min(data,	axis=0))

				fig.tight_layout()
				matplotlib.pyplot.show()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

RUN THE CELL AND SHOW THAT THE OUTPUT IS THE SAME

SLIDE CODE REUSE

The logic of the code is now easier to understand
We identify the input files, then apply one function per action in a loop:

Print the filename
Load the data with np.loadtxt()

detect_problems() in the data
analyse() the data

THIS HAS ADVANTAGES
The code is much shorter (as we read it, here)
The function names are human-readable and descriptive
It is much easier to see what the code is doing

SLIDE GOOD CODE PAYS OFF

PUT SLIDES ON SCREEN
YOU MAY BE ASKING YOURSELF WHY YOU WANT TO BOTHER WITH THIS

After 6 months, the referee report arrives and you need to rerun experiments

Another student is continuing the project

Some random person reads your article and asks for the code

def	detect_problems(data):
				if	numpy.max(data,	axis=0)[0]	==	0	and	numpy.max(data,	axis=0)[20]	==	20:
								print('Suspicious	looking	maxima!')
				elif	numpy.sum(numpy.min(data,	axis=0))	==	0:
								print('Minima	add	up	to	zero!')
				else:
								print('Seems	OK!')

1
2
3
4
5
6
7

for	file	in	files:
				print(file)
				data	=	numpy.loadtxt(fname=file,	delimiter=',')
				detect_problems(data)
				analyse(data)				

1
2
3
4
5

Helps spot errors quickly

Clarifies structure in your mind as well as in the code

Saves you time in the long run! ("Future You" will back this up)

SLIDE TESTING AND DOCUMENTATION

SLIDE MOTIVATION

Once a useful function is written, it gets reused over and over, often without further checking
When you write a function you should:

Test output for correctness
Document the expected function

We'll demonstrate this with a function to centre a numerical array

SLIDE CREATE A NEW NOTEBOOK

New notebook called testing

ADD AN INTRO IN MARKDOWN

ADD IMPORTS

Write the test function
When doing some analyses, such as PCA, we might want to recentre and normalise our dataset.
Let's write a function to recentre an array of data, like the inflammation data.

SLIDE TEST DATASETS

ASK THE LEARNERS HOW WE CAN CHECK THAT THE FUNCTION WORKS IN THE WAY WE
INTEND

#	Testing	and	Documentation

When	writing	a	function,	we	should

*	test	output	for	correctness
*	document	the	expected	function

1
2
3
4
5
6

import	numpy1

def	centre(data,	desired):
				return	(data	-	np.mean(data))	+	desired

1
2

We could try centre() on our real data, but we don't know what the answer should be!*

We'll use numpy 's zeros() function to generate an input set where we know the answer

SHOW THE TEST DATA

Let's recentre the data at the value 2

This works, so we'll try it on real data

SLIDE REAL DATA

LOAD THE DATA

Let's recentre the data to zero

This looks OK, but how would we know it worked?

SLIDE CHECK PROPERTIES

ASK LEARNERS HOW THEY COULD VERIFY THE FUNCTION WORKED AS INTENDED
We can check properties of the original and centred data

mean , min , max , std

We'd expect the mean of the new dataset to be approximately 0.0

Also, the range (max - min) should be unchanged.

The limits seem OK, but has the shape of the data distribution changed?
The variance of the dataset should be unchanged.

z	=	np.zeros((2,	2))
z

1
2

centre(z,	3.0)1

data	=	numpy.loadtxt(fname='data/inflammation-01.csv',	delimiter=',')1

centre(data,	0))1

print('original	min,	mean,	and	max	are:',	numpy.min(data),	numpy.mean(data),	numpy.max1

centred	=	centre(data,	0)
print('min,	mean,	and	max	of	centered	data	are:',	numpy.min(centred),
						numpy.mean(centred),	numpy.max(centred))		

1
2
3

print('std	dev	before	and	after:',	numpy.std(data),	numpy.std(centred))				1

The range and variance are as expected, but the mean is not quite 0.0

The function is probably OK, as-is

SLIDE DEFAULT ARGUMENTS

So far we have named the two arguments in our centre() function
We need to specify both of them when we call the function
Demo code

We can set a default value for function arguments when we define the function
Set defaults by assigning a value in the function declaration, as follows:

The change we've made is to set desired=0.0 in the function prototype.
Now, by default, the function will recentre the passed data to zero, without us having to specify that:

SLIDE DOCUMENTING FUNCTIONS

ADD TEXT TO THE NOTEBOOK

We can document what our function does by writing comments in the code, and this is a good thing.
But Python allows us to document what a function does directly in the function using a docstring.
This is a string that is put in a specific place in the function definition, and it has special
properties that are useful.
To add a docstring to our centre() function, we add a string immediately after the function
declaration
ADD DOCSTRING TO EXISTING FUNCTION AND RUN CELL

centre([1,	2,	3],	0)1

def	centre(data,	desired=0.0):
				"""Returns	the	array	in	data,	recentered	around	the	desired	value."""
				return	(data	-	np.mean(data))	+	desired

1
2
3

centre([1,	2,	3])1

##	Documentation

We	can	document	what	our	code	is	meant	to	do	in	several	ways

*	writing	comments	in	the	code
*	writing	docstrings
*	writing	documentation	documents

1
2
3
4
5
6
7

RESTART KERNEL AND RUN ALL
This documents the function directly in the source code, and it also hooks that documentation into
Python 's help system.

We can ask for help on any function using the help() function:
built-in function

module function

and if you write it your own functions

SHOW LEARNERS HOW DETAILED THE BUILTIN AND NUMPY HELP IS
Using the triple quotes (""") allows us to use a multi-line string to describe the function:
ADD EXTRA DOCUMENTATION

DEMONSTRATE THE CHANGE

SLIDE EXERCISE 03

MOVE SLIDES TO THE SCREEN

def	centre(data,	desired):
				"""Returns	the	array	in	data,	recentered	around	the	desired	value."""
				return	(data	-	numpy.mean(data))	+	desired

1
2
3

help(print)1

help(numpy.mean)1

help(centre)1

def	centre(data,	desired):
				"""Returns	the	array	in	data,	recentred	around	the	desired	value.
				
				Example

				>>>	centre([1,	2,	3],	0)
				[-1,	0,	1]
				"""
				return	(data	-	numpy.mean(data))	+	desired

1
2
3
4
5
6
7
8
9

def	rescale(data):
				"""Returns	input	array	rescaled	to	[0.0,	0.1]."""
				l	=	numpy.min(data)
				h	=	numpy.max(data)
				return	(data	-	l)	/	(h	-	l)

1
2
3
4
5

SLIDE ERRORS AND EXCEPTIONS

MOVE NOTEBOOK TO THE SCREEN

SLIDE CREATE A NEW NOTEBOOK

Call the notebook errors

ADD AN INTRO

SLIDE ERRORS

Programming is essentially just making errors over and over again until the code works ;)
The key skill is learning how to identify, and then fix, the errors when they are reported.
All programmers make errors.

SLIDE TRACEBACK

Python tries to be helpful, and provides extensive information about errors
These are called tracebacks
We'll induce a traceback, so we can look at it
ENTER CODE IN A CELL

NEW CELL

SLIDE PARTS OF A TRACEBACK

#	Errors	and	Exceptions

`Python`	provides	useful	error	reports	of	what	has	gone	wrong,	which	can	help	with	debugging.

1
2
3

def	favourite_ice_cream():
				ice_creams	=	["chocolate",
																		"vanilla",
																		"strawberry"]
				print(ice_creams[3])

1
2
3
4
5

favourite_ice_cream()1

TALK THROUGH THE TRACEBACK IN THE NOTEBOOK
The stack of all steps leading to the error is shown
The steps are separated by lines starting <ipython-input-1…

The steps run in order from top to bottom
The first step has an arrow, showing where we were when the error happened. We were calling the
favourite_ice_cream() function

The second step tells us that we were in the favourite_ice_cream() function
The second step also points to the line print(ice_creams[3]) , which is where the error occurs
This is also the last step, and the precise error is shown on the final line:
IndexError: list index out of range

Together, this tells us that we have made an index error in the line print(ice_creams[3]) , and
by looking we can see that we've tried to use an index outside the length of the list.

SLIDE SYNTAX ERRORS

The error you saw just now was a *logic error* - the code was valid Python , but it did something
'illegal'
Syntax errors occur when the code is not interpretable as valid Python

ENTER CODE IN A NEW CELL - NOTE THE EXTRA SPACE AND LACK OF COLON!

SLIDE SYNTAX TRACEBACK

Python tells us there's a SyntaxError - the code isn't written correctly

IndexError																																Traceback	(most	recent	call	last)
<ipython-input-4-8f18c934933f>	in	<module>()
---->	1	favourite_ice_cream()

<ipython-input-3-3f8910a0f7ad>	in	favourite_ice_cream()
						3																			"vanilla",
						4																			"strawberry"]
---->	5					print(ice_creams[3])

IndexError:	list	index	out	of	range

1
2
3
4
5
6
7
8
9
10
11

def	some_function()
				msg	=	"hello,	world!"
				print(msg)
					return	msg

1
2
3
4

		File	"<ipython-input-6-bef8c18baffa>",	line	1
				def	some_function()
																							^
SyntaxError:	invalid	syntax

1
2
3
4

It points to the approximate location of the problem with a caret/hat (^)
We can see that we need to put a colon at the end of the function declaration
FIX THE CODE IN PLACE

SLIDE FIXED?

SHOW AND RUN FIXED CODE

SLIDE NOT QUITE

Python now tells us that there's an IndentationError

We don't learn about all the syntax errors at one time - Python gives up after the first one it finds
(fixing the first error in a file might correct all subsequent errors)

SLIDE NAME ERRORS

If you try to use a variable that is not defined in scope, you will get a NameError

This often happens with typos
ENTER CODE IN A NEW CELL

We have a NAME ERROR

This is true in functions/loops, too
ENTER CODE IN A NEW CELL

def	some_function():
				msg	=	"hello,	world!"
				print(msg)
					return	msg

1
2
3
4

		File	"<ipython-input-7-b32ba7f38b6b>",	line	4
				return	msg
				^
IndentationError:	unexpected	indent

1
2
3
4

print(a)1

NameError																																	Traceback	(most	recent	call	last)
<ipython-input-5-c5a4f3535135>	in	<module>()
---->	1	print(a)

NameError:	name	'a'	is	not	defined

1
2
3
4
5
6

This still gives us a name error

SLIDE INDEX ERRORS

If you try to access an element of a collection that does not exist, you'll get an IndexError

ENTER CODE IN NEW CELL

This gives us an IndexError

SLIDE EXERCISE 04

PUT SLIDES ON SCREEN

for	i	in	range(3):
				count	=	count	+	i

1
2

NameError																																	Traceback	(most	recent	call	last)
<ipython-input-6-15ebe951e74d>	in	<module>()
						1	for	i	in	range(3):
---->	2					count	=	count	+	i

NameError:	name	'count'	is	not	defined

1
2
3
4
5
6
7

letters	=	['a',	'b',	'c']
for	letter	in	range(4):
				print("Letter",	letter,	"is",	letters[letter])

1
2
3

Letter	#1	is	a
Letter	#2	is	b
Letter	#3	is	c

IndexError																																Traceback	(most	recent	call	last)
<ipython-input-7-656a22fa6ec5>	in	<module>()
						3	print("Letter	#2	is",	letters[1])
						4	print("Letter	#3	is",	letters[2])
---->	5	print("Letter	#4	is",	letters[3])

IndexError:	list	index	out	of	range

1
2
3
4
5
6
7
8
9
10
11

SLIDE DEFENSIVE PROGRAMMING

PUT NOTEBOOK BACK ON SCREEN

SLIDE CREATE A NEW NOTEBOOK

Call it defensive

ADD INTRO IN MARKDOWN

SLIDE DEFENSIVE PROGRAMMING

So far we have focused on the basic tools of writing a program: variables, lists, loops, conditionals,
and functions.
We haven't looked very much at whether a program is getting the right answer (and whether it
continues to get the right answer as we change it).
It's all very well having some code, but if it doesn't give the right answer it can be damaging, or
worse than useless
Defensive programming is the practice of expecting your code to have mistakes, and guarding
against them.
To do this, we will write some code that checks its own operation.
This is generally good practice, speeds up software development, and helps ensure that your code is
doing what you intend.

SLIDE ASSERTIONS

message	=	""
for	number	in	range(10):
				#	use	a	if	the	number	is	a	multiple	of	3,	otherwise	use	b
				if	(number	%	3)	==	0:
								message	=	message	+	"a"
				else:
								message	=	message	+	"b"
print(message)

1
2
3
4
5
6
7
8

#	Defensive	Programming

Defensive	programming	is	the	practice	of	expecting	your	code	to	have	mistakes,	and	guarding	against	them.

1
2
3

ADD INTRODUCTORY TEXT

Assertions are a Pythonic way to see if code runs correctly

10-20% of the Firefox source code is assertions/checks on the rest of the code!

We assert that a condition is True

If it's True , the code may be correct
If it's False , the code is not correct

The syntax for an assertion is that we assert some <condition> is True , and if it's not, an
error is thrown (AssertionError), with some text explaining the problem.

SLIDE EXAMPLE ASSERTION

Type code then ask learners what it does

EXECUTE CELL

The traceback tells us there is an AssertionErroe and highlights which assertion failed.

##	Assertions

Assertions	are	a	pythonic	way	to	see	if	a	program's	state	is	correct.

``python
assert	<condition>,	"Some	text	describing	the	problem"
``

1
2
3
4
5
6
7

numbers	=	[1.5,	2.3,	0.7,	-0.001,	4.4]
total	=	0.0
for	n	in	numbers:
				assert	n	>	0.0,	'Data	should	only	contain	positive	values'
				total	+=	n
print('total	is:',	total)

1
2
3
4
5
6

AssertionError																												Traceback	(most	recent	call	last)
<ipython-input-1-985f50018947>	in	<module>()
						2	total	=	0.0
						3	for	n	in	numbers:
---->	4					assert	n	>	0.0,	'Data	should	only	contain	positive	values'
						5					total	+=	n
						6	print('total	is:',	total)

AssertionError:	Data	should	only	contain	positive	values

1
2
3
4
5
6
7
8
9
10

SLIDE WHEN TO USE ASSERTIONS

Assertions are useful in three circumstances:

preconditions - must be true at the start of an operation

postcondition - something guaranteed to be true when an operation completes

invariant - something always true at a particular point in code

PUT EXAMPLE CODE IN NEW CELL

Test with some values - in the same cell

DO ALL INPUTS MAKE SENSE?

ASK LEARNERS WHAT SORT OF CHECKS WE NEED TO MAKE
Input type - 4 values, all numbers
x0 < x1; y0 < y1 - lower left corner is identified first
output values less than or equal to 1 - correct result returned

SLIDE PRECONDITIONS

Preconditions must be true at the start of an operation or function
Here, we want to ensure that rect has four values

def	normalise_rectangle(rect):
				"""Normalises	a	rectangle	to	the	origin,	longest	axis	1.0	units."""
				x0,	y0,	x1,	y1	=	rect
				
				dx	=	x1	-	x0
				dy	=	y1	-	y0
				
				if	dx	>	dy:
								scaled	=	float(dy)	/	dx
								upper_x,	upper_y	=	1.0,	scaled
				else:
								scaled	=	float(dx)	/	dy
								upper_x,	upper_y	=	scaled,	1.0
								
				return	(0,	0,	upper_x,	upper_y)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

normalise_rectangle((1.0,	1.0,	4.0,	4.0))
normalise_rectangle((1.0,	1.0,	4.0,	6.0))

1
2

normalise_rectangle((6.0,	4.0,	1.0,	1.0))
normalise_rectangle((6.0,	4.0,	1.0))

1
2

MAKE CHANGE IN CELL

TEST FAILING INPUT AND SHOW ASSERTIONERROR

SHOW ANOTHER PROBLEM

SLIDE POSTCONDITIONS

Postconditions must be true at the end of an operation or function.
Here, we want to assert that the upper x and y values are in the range [0, 1]
MAKE CHANGE IN CELL

def	normalise_rectangle(rect):
				"""Normalises	a	rectangle	to	the	origin,	longest	axis	1.0	units."""
				assert	len(rect)	==	4,	"Rectangle	must	have	four	co-ordinates"
				x0,	y0,	x1,	y1	=	rect
				
				dx	=	x1	-	x0
				dy	=	y1	-	y0
				
				if	dx	>	dy:
								scaled	=	float(dy)	/	dx
								upper_x,	upper_y	=	1.0,	scaled
				else:
								scaled	=	float(dx)	/	dy
								upper_x,	upper_y	=	scaled,	1.0
								
				return	(0,	0,	upper_x,	upper_y)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

normalise_rectangle((6.0,	4.0,	1.0))1

normalise_rectangle((6.0,	4.0,	1.0,	-0.5))1

TEST FAILING INPUT TO SHOW ASSERTIONERROR

This isn't our code's fault!
The problem is that the input values have the upper-right corner below the lower left corner
We need to add another precondition

def	normalise_rectangle(rect):
				"""Normalises	a	rectangle	to	the	origin,	longest	axis	1.0	units."""
				assert	len(rect)	==	4,	"Rectangle	must	have	four	co-ordinates"
				x0,	y0,	x1,	y1	=	rect
				
				dx	=	x1	-	x0
				dy	=	y1	-	y0
				
				if	dx	>	dy:
								scaled	=	float(dy)	/	dx
								upper_x,	upper_y	=	1.0,	scaled
				else:
								scaled	=	float(dx)	/	dy
								upper_x,	upper_y	=	scaled,	1.0
								
				assert	0	<	upper_x	<=	1.0,	"Calculated	upper	x-coordinate	invalid"
				assert	0	<	upper_y	<=	1.0,	"Calculated	upper	y-coordinate	invalid"				
								
				return	(0,	0,	upper_x,	upper_y)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

normalise_rectangle((6.0,	4.0,	1.0,	-0.5))1

DEMONSTRATE THE ERROR THAT'S RAISED

SLIDE NOTES ON ASSERTIONS

PUT SLIDES ON SCREEN

Assertions help understand programs: they declare what the program should be doing

Assertions help the person reading the program match their understanding of the code to what the
code expects

Fail early, fail often

Turn bugs into assertions or tests: if you've made the mistake once, you might make it again

SLIDE TEST-DRIVEN DEVELOPMENT

SLIDE A PROBLEM

We want to write a function that identifies when two or more ranges (eg. time-series overlap).
The range of each input is given as a pair of numbers: (start, end)
We want the largest range that all the inputs include

def	normalise_rectangle(rect):
				"""Normalises	a	rectangle	to	the	origin,	longest	axis	1.0	units."""
				assert	len(rect)	==	4,	"Rectangle	must	have	four	co-ordinates"
				x0,	y0,	x1,	y1	=	rect
				assert	x0	<	x1,	"Invalid	x-coordinates"
				assert	y0	<	y1,	"Invalid	y-coordinates"
				
				dx	=	x1	-	x0
				dy	=	y1	-	y0
				
				if	dx	>	dy:
								scaled	=	float(dy)	/	dx
								upper_x,	upper_y	=	1.0,	scaled
				else:
								scaled	=	float(dx)	/	dy
								upper_x,	upper_y	=	scaled,	1.0
								
				assert	0	<	upper_x	<=	1.0,	"Calculated	upper	x-coordinate	invalid"
				assert	0	<	upper_y	<=	1.0,	"Calculated	upper	y-coordinate	invalid"				
								
				return	(0,	0,	upper_x,	upper_y)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

ASK LEARNERS HOW THEY WOULD GO ABOUT THE PROCESS

SLIDE A NOVICE'S APPROACH

1. Write a function: range_overlap()

2. Call the function interactively on two or three test inputs
3. If the answer is wrong, fix the function

This works - thousands of scientists are doing it right now!

SLIDE A PROGRAMMER'S APPROACH

1. Write a short function for each test
2. Write a range_overlap() function that should pass those tests
3. If any answers are wrong, fix it and re-run the test functions

WHy DO IT THIS WAY?
We have to say what the function does - in detail - before we write it - clarity of thought, aids
design
Avoids confirmation bias - we have to think about what could go wrong before we write the function,
not write a function and confirm that it works on sample data

SLIDE TEST FUNCTIONS

PUT THE NOTEBOOK ON SCREEN
Add an intro

Here are three test functions for a hypothetical range_overlap() function

1. single range returns itself
2. simple overlap of two ranges
3. simple overlap of three ranges

ENTER FUNCTIONS IN A CELL AND RUN
NOTE THAT IN THE ABSENCE OF A FUNCTION, IT FAILS

##	Test-Driven	Development

In	test-driven	development,	we	write	tests	that	assert	what	functions	should	do	before	we	start	writing	the	functions	themselves.

1
2
3

assert	range_overlap([(0.0,	1.0)])	==	(0.0,	1.0)
assert	range_overlap([(2.0,	3.0),	(2.0,	4.0)])	==	(2.0,	3.0)
assert	range_overlap([(0.0,	1.0),	(0.0,	2.0),	(-1.0,	1.0)])	==	(0.0,	1.0)

1
2
3

NOTE THAT WE HAVE IMPLICITLY DEFINED WHAT OUR INPUT AND OUTPUT LOOK LIKE
NOTE THAT WE'RE MISSING A CASE WITH NO OVERLAP
How should we define a result where there is no overlap? DISCUSS WITH LEARNERS Return
(0, 0) ; return None ?

Are our ranges (x, y) or [x, y] ? - do they meet when we have [(0, 1), (1, 2)]

ASSUME

Return None when there's no overlap

Overlaps must have non-zero width

ADD TWO MORE TESTS

SLIDE MAKE A TEST FUNCTION

Wrap the assertions in a function
DO THIS IN THE SAME CELL

SLIDE WRITE RANGE_OVERLAP()

WRITE THE FUNCTION IN THE SAME CELL

RUN THE CELL
TEST IN THE CELL BELOW

assert	range_overlap([(0.0,	1.0),	(5.0,	6.0)])	==	None
assert	range_overlap([(0.0,	1.0),	(1.0,	2.0)])	==	None

1
2

def	test_range_overlap():
				assert	range_overlap([(0.0,	1.0)])	==	(0.0,	1.0)
				assert	range_overlap([(2.0,	3.0),	(2.0,	4.0)])	==	(2.0,	3.0)
				assert	range_overlap([(0.0,	1.0),	(0.0,	2.0),	(-1.0,	1.0)])	==	(0.0,	1.0)
				assert	range_overlap([(0.0,	1.0),	(5.0,	6.0)])	==	None
				assert	range_overlap([(0.0,	1.0),	(1.0,	2.0)])	==	None

1
2
3
4
5
6

def	range_overlap(ranges):
				"""Return	common	overlap	among	a	set	of	(low,	high)	ranges."""
				lowest	=	0.0
				highest	=	1.0
				for	(low,	high)	in	ranges:
								lowest	=	max(lowest,	low)
								highest	=	min(highest,	high)
				return	(lowest,	highest)

1
2
3
4
5
6
7
8

test_range_overlap()1

This fails:

SECOND TEST FAILS
We're initialising lowest and highest to arbitrary values - we should really do this from the data
always initialise from data - a very sound rule!

SLIDE EXERCISE 05

PUT SLIDES ON SCREEN
add a test

Solution:

AssertionError																												Traceback	(most	recent	call	last)
<ipython-input-25-cf9215c96457>	in	<module>()
---->	1	test_range_overlap()

<ipython-input-24-2c4b718b7bc2>	in	test_range_overlap()
					10	def	test_range_overlap():
					11					assert	range_overlap([(0.0,	1.0)])	==	(0.0,	1.0)
--->	12					assert	range_overlap([(2.0,	3.0),	(2.0,	4.0)])	==	(2.0,	3.0)
					13					assert	range_overlap([(0.0,	1.0),	(0.0,	2.0),	(-1.0,	1.0)])	==	(0.0,	1.0)
					14					assert	range_overlap([(0.0,	1.0),	(5.0,	6.0)])	==	None

AssertionError:	

1
2
3
4
5
6
7
8
9
10
11
12
13

assert	range_overlap([])	==	None1

def	range_overlap(ranges):
				"""Return	common	overlap	among	a	set	of	(low,	high)	ranges."""
				if	not	ranges:
								return	None
				lowest,	highest	=	ranges[0]
				for	(low,	high)	in	ranges[1:]:
								lowest	=	max(lowest,	low)
								highest	=	min(highest,	high)
				if	lowest	>=	highest:		#	no	overlap
								return	None
				else:
								return	(lowest,	highest)

1
2
3
4
5
6
7
8
9
10
11
12

